19. The area of a given rectangle is \( 150 \mathrm{~cm}^{2} \). If Side \( A \) is 10 cm and Side \( B \) is \( \sqrt{3 x} \), what is the value of \( x \) ? \( \begin{array}{llll}\text { A. } 75 \mathrm{~cm} & \text { B. } 15 \mathrm{~cm} & \text { C. } 225 \mathrm{~cm} & \text { D. } 3 \mathrm{~cm}\end{array} \) rt Answer
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To find the value of \( x \), we can use the formula for the area of a rectangle, which is given by \( \text{Area} = \text{Side A} \times \text{Side B} \). Here, we know that the area is \( 150 \mathrm{~cm}^{2} \), Side \( A \) is \( 10 \mathrm{~cm} \), and Side \( B = \sqrt{3x} \). So, we have: \[ 10 \times \sqrt{3x} = 150 \] Dividing both sides by \( 10 \): \[ \sqrt{3x} = 15 \] Now, squaring both sides gives: \[ 3x = 15^2 \] \[ 3x = 225 \] Dividing by \( 3 \): \[ x = \frac{225}{3} = 75 \] Thus, the value of \( x \) is \( \boxed{75} \mathrm{~cm} \).