Pregunta

The drive pulley of an electric motor takes 20 seconds to accelerate uniformly from rest to \( 2400 \mathrm{r} / \mathrm{min} \). Calculate: (a) The angular acceleration of the pulley. \( \left(12,57 \mathrm{rad} / \mathrm{s}^{2}\right) \) (b) The number of revolutions made by the pulley during the acceleration. (c) The angular displacement of the pulley during the acceleration. \( (2513 \mathrm{rad}) \)

Ask by Newton Curry. in South Africa
Feb 09,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) The angular acceleration of the pulley is 4π rad/s² (approximately 12.57 rad/s²). (b) The pulley makes 400 revolutions during the acceleration. (c) The angular displacement of the pulley during the acceleration is 800π radians (approximately 2513 radians).

Solución

We are given that the pulley starts from rest and accelerates uniformly for 20 seconds to a speed of 2400 revolutions per minute (r/min). Here’s how to calculate each part. Step 1. Convert the final angular speed to radians per second. Since 1 revolution = 2π radians and 1 minute = 60 seconds:   ω_final = 2400 (rev/min) × (1 min/60 s) × 2π (rad/rev)       = 40 (rev/s) × 2π (rad/rev)       = 80π rad/s Step 2. (a) Angular acceleration α Using the formula:   α = (ω_final – ω_initial) / t Since it starts from rest, ω_initial = 0.   α = (80π – 0) / 20     = 4π rad/s² In decimal, 4π ≈ 12.57 rad/s². Step 3. (b) Number of revolutions made during acceleration First, compute the angular displacement θ during the acceleration using the formula for motion with constant acceleration:   θ = ω_initial * t + (1/2) α t² Here, ω_initial = 0, so:   θ = ½ (4π) (20²)    = 2π × 400    = 800π rad Since 1 revolution = 2π radians, the number of revolutions (N) is:   N = θ / (2π)     = (800π) / (2π)     = 400 revolutions Step 4. (c) Angular displacement during the acceleration We already computed the total angular displacement as:   θ = 800π rad This is approximately:   θ ≈ 800 × 3.1416 ≈ 2513 rad Summary of Answers: (a) Angular acceleration: 4π rad/s² (≈12.57 rad/s²) (b) Number of revolutions: 400 revolutions (c) Angular displacement: 800π rad (≈2513 rad)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the required values, we'll start from the known quantities and use the equations of motion for rotational dynamics. **(a)** To calculate the angular acceleration \( \alpha \), we first need to convert the final angular speed \( \omega_f = 2400 \mathrm{r/min} \) into radians per second: \[ \omega_f = 2400 \times \frac{2\pi \, \text{rad}}{1 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}} = 2400 \times \frac{2\pi}{60} \, \text{rad/s} \approx 251.33 \, \text{rad/s}. \] The initial angular velocity \( \omega_i = 0 \) (starts from rest), and the time \( t = 20 \, \text{s} \). Using the formula for angular acceleration: \[ \alpha = \frac{\omega_f - \omega_i}{t} = \frac{251.33 - 0}{20} \approx 12.57 \, \text{rad/s}^2. \] **(b)** To find the number of revolutions made by the pulley during the acceleration, we can use the following relationship: \[ \theta = \omega_i t + \frac{1}{2} \alpha t^2. \] Substituting \( \omega_i = 0 \): \[ \theta = \frac{1}{2} \alpha t^2 = \frac{1}{2} \times 12.57 \times 20^2 = \frac{1}{2} \times 12.57 \times 400 = 2514 \, \text{rad}. \] To convert this to revolutions: \[ \text{Number of revolutions} = \frac{2514 \text{ rad}}{2\pi} \approx 400.0 \text{ revolutions}. \] **(c)** The angular displacement \( \theta \) has already been calculated as \( 2514 \, \text{rad} \). In summary: (a) \( \alpha \approx 12.57 \, \text{rad/s}^2 \) (b) \( \text{Number of revolutions} \approx 400.0 \) (c) \( \theta \approx 2514 \, \text{rad} \)

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad