Pregunta
upstudy study bank question image url

If money can be invested at 6 . \( 3 \% \) compounded quarterly, which is larger, \( \$ 8619 \) now or \( \$ 16,000 \) in 10 years? Use present value to decide. The present value of \( \$ 16,000 \) in 10 years is \( \$ \). (Do not round until the final answer. Then round to the nearest cent as needed)

Ask by Simpson Martin. in the United States
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The present value of $16,000 in 10 years is approximately $1,248.38. Since $8,619 is larger than $1,248.38, $8,619 is larger than $16,000 in 10 years.

Solución

To determine which amount is larger, we need to calculate the present value of $16,000 in 10 years using the formula for present value: \[ PV = \frac{FV}{(1 + r)^n} \] where: - \( PV \) is the present value, - \( FV \) is the future value ($16,000 in this case), - \( r \) is the annual interest rate (6.3% in this case), - \( n \) is the number of years (10 years in this case). Given that the interest is compounded quarterly, we need to adjust the annual interest rate to a quarterly rate. The formula for quarterly interest rate is: \[ r_{quarterly} = \frac{r_{annual}}{4} \] Substitute the values into the formula for present value: \[ PV = \frac{16,000}{(1 + \frac{6.3}{4})^{10}} \] Now, we can calculate the present value of $16,000 in 10 years. Calculate the value by following steps: - step0: Calculate: \(\frac{16000}{\left(1+\frac{6.3}{4}\right)^{10}}\) - step1: Divide the terms: \(\frac{16000}{\left(1+\frac{63}{40}\right)^{10}}\) - step2: Add the numbers: \(\frac{16000}{\left(\frac{103}{40}\right)^{10}}\) - step3: Simplify the expression: \(\frac{16000}{\frac{103^{10}}{40^{10}}}\) - step4: Rewrite the expression: \(\frac{16000\times 40^{10}}{103^{10}}\) The present value of $16,000 in 10 years is approximately $1,248.382. Now, we need to compare this present value with $8,619 to determine which amount is larger. Numbers by following steps: - step0: Solution: \(8619\) The present value of $8,619 is $8,619. Comparing the present values, $8,619 is larger than $1,248.382. Therefore, $8,619 is larger than $16,000 in 10 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine which sum is larger, we need to calculate the present value (PV) of \$16,000 received in 10 years with an interest rate of 6.3% compounded quarterly. The formula for PV is: \[ PV = \frac{FV}{(1 + r/n)^{nt}} \] Where: - \(FV\) is the future value (\$16,000) - \(r\) is the annual interest rate (0.063) - \(n\) is the number of compounding periods per year (4 for quarterly) - \(t\) is the number of years (10) Plugging in the numbers: \[ PV = \frac{16000}{(1 + 0.063/4)^{4 \times 10}} = \frac{16000}{(1 + 0.01575)^{40}} = \frac{16000}{(1.01575)^{40}} \] Calculating \( (1.01575)^{40} \): \[ (1.01575)^{40} \approx 1.8687 \] Now, calculate the PV: \[ PV \approx \frac{16000}{1.8687} \approx 8561.75 \] Now, rounding to the nearest cent, the present value of \$16,000 in 10 years is approximately \$8,561.75. Now, comparing: - Present value of \$16,000: \$8,561.75 - Current amount: \$8,619.00 Therefore, \$8,619.00 is larger. --- To put this into a historical context, compounding interest has its roots back to ancient civilizations, where the concept started with basic loans and deposits. The modern formula derives from mathematicians in the 17th century, who refined these ideas into the principles we use today. If you're curious about how to make your money work even harder, consider learning about different investment vehicles like stocks, bonds, and real estate. Each option comes with different risk levels and return rates, which can give you a more personalized investment strategy!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad