\( \lim _ { n \rightarrow \infty } \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { 1 + x } d x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To evaluate the limit \( \lim _ { n \rightarrow \infty } \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { 1 + x } d x \), we first analyze the integrand \( \frac{x^n}{1+x} \). As \( n \) approaches infinity, \( x^n \) approaches 0 for \( x \in [0, 1) \) and approaches 1 when \( x = 1 \). Thus, the main contribution to the integral comes from values of \( x \) very close to 1. Now, we can find the limit using the Dominated Convergence Theorem. Note that \( \frac{x^n}{1+x} \) is bounded by \( x^n \), and since \( x^n \) converges to 0 for \( x < 1 \), we replace the integrand with the limit: \[ \lim_{n \to \infty} \frac{x^n}{1+x} = \begin{cases} 0 & \text{if } 0 \leq x < 1 \\ \frac{1}{2} & \text{if } x = 1 \end{cases} \] Integrating this limit over the interval \( [0, 1] \): \[ \int_0^1 0 \, dx = 0 \] Therefore, we have: \[ \lim_{n \to \infty} \int_0^1 \frac{x^n}{1+x} \, dx = 0. \] Thus, the final answer is: \[ \lim _ { n \rightarrow \infty } \int _ { 0 } ^ { 1 } \frac { x ^ { n } } { 1 + x } d x = 0. \]