\( \lim _ { x \rightarrow 0 } \frac { 2 \log ( 1 + \sin x ) - 2 x + x ^ { 2 } } { ( 2 e ^ { x } - 2 - 2 x - x ^ { 2 } ) \cos ^ { 2 } x } \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the limit \[ \lim _ { x \rightarrow 0 } \frac { 2 \log ( 1 + \sin x ) - 2 x + x ^ { 2 } } { ( 2 e ^ { x } - 2 - 2 x - x ^ { 2 } ) \cos ^ { 2 } x }, \] we will use Taylor series expansion for the functions involved. For small values of \( x \): 1. The Taylor expansion for \( \sin x \) is: \[ \sin x = x - \frac{x^3}{6} + O(x^5). \] Therefore, \[ 1 + \sin x = 1 + x - \frac{x^3}{6} + O(x^5). \] Logs can be approximated using the Taylor expansion around 1: \[ \log(1+u) \approx u - \frac{u^2}{2} + O(u^3). \] Plugging \( u = \sin x \) in: \[ \log(1 + \sin x) \approx \left(x - \frac{x^3}{6}\right) - \frac{1}{2}\left(x - \frac{x^3}{6}\right)^2 + O(x^5). \] After simplification, we find: \[ 2 \log(1 + \sin x) \approx 2x - \frac{x^2}{3} + O(x^4). \] 2. Now, we replace this in our limit expression: \[ 2 \log(1 + \sin x) - 2x + x^2 \approx \left(2x - \frac{x^2}{3}\right) - 2x + x^2 \approx \frac{2}{3} x^2 + O(x^4). \] 3. Next, let's expand \( e^x \): \[ e^x = 1 + x + \frac{x^2}{2} + O(x^3), \] so, \[ 2e^x = 2 + 2x + x^2 + O(x^3), \] leading to: \[ 2e^x - 2 - 2x - x^2 \approx O(x^3). \] 4. For \( \cos^2 x \), we have: \[ \cos x = 1 - \frac{x^2}{2} + O(x^4), \] thereby, \[ \cos^2 x = \left(1 - \frac{x^2}{2}\right)^2 \approx 1 - x^2 + O(x^4). \] Now we substitute everything back into our limit: The numerator becomes approximately \( \frac{2}{3} x^2 + O(x^4) \). The denominator becomes approximately \( O(x^3) \cdot (1 - x^2) = O(x^3) \). Thus our limit simplifies to: \[ \lim_{x \to 0} \frac{\frac{2}{3} x^2 + O(x^4)}{O(x^3)}. \] Dividing by \( x^3 \): The leading term contributes \( \frac{2/3}{1} = 0 \). Finally, the limit evaluates to: \[ \lim_{x \to 0} \frac{2}{3x} = 0. \] Thus, the limit is: \[ \boxed{0}. \]