Pregunta
Simplify. \[ \left(2 x^{5} y^{-4}\right)^{3} \] Write your answer using only positive exponents. \( \square \)
Ask by Flynn French. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{8x^{15}}{y^{12}} \).
Solución
To simplify the expression (2x⁵y⁻⁴)³, follow these steps:
1. Apply the exponent 3 to each factor inside the parentheses:
(2)³ ⋅ (x⁵)³ ⋅ (y⁻⁴)³
2. Simplify each term:
(2)³ = 8
(x⁵)³ = x^(5×3) = x¹⁵
(y⁻⁴)³ = y^(–4×3) = y⁻¹²
3. Write the expression with positive exponents:
8x¹⁵y⁻¹² = 8x¹⁵ / y¹²
Thus, the simplified expression is:
8x¹⁵ / y¹²
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To simplify \(\left(2 x^{5} y^{-4}\right)^{3}\), we can apply the power of a product rule, which states that \((a \cdot b)^n = a^n \cdot b^n\). So, we have: \[ \left(2\right)^{3} \cdot \left(x^{5}\right)^{3} \cdot \left(y^{-4}\right)^{3} = 8 \cdot x^{15} \cdot y^{-12} \] Next, to express the answer with only positive exponents, we rewrite \(y^{-12}\) as \(\frac{1}{y^{12}}\). Thus, we get: \[ \frac{8x^{15}}{y^{12}} \] So, the final simplified expression is: \[ \frac{8x^{15}}{y^{12}} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium