Pregunta
Simplify. \[ \frac{x^{-5}}{x^{5}} \] Write your answer with a positive exponent only.
Ask by Wyatt Cook. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified expression is \( \frac{1}{x^{10}} \).
Solución
To simplify the expression, use the rule for dividing powers of the same base:
a^m / a^n = a^(m - n).
Here, m = -5 and n = 5. So, we get:
x^(-5) / x^(5) = x^(-5 - 5) = x^(-10).
Since we need the answer with only positive exponents, rewrite x^(-10) as:
1/x^(10).
Thus, the simplified expression is:
1/x^(10).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To simplify the expression \( \frac{x^{-5}}{x^{5}} \), we can use the properties of exponents. Specifically, when we divide powers with the same base, we subtract the exponents. Therefore, we have: \[ \frac{x^{-5}}{x^{5}} = x^{-5 - 5} = x^{-10}. \] To write the answer with a positive exponent, we recall that \( x^{-n} = \frac{1}{x^{n}} \). Consequently, we can express \( x^{-10} \) as: \[ x^{-10} = \frac{1}{x^{10}}. \] So, the final answer is: \[ \frac{1}{x^{10}}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium