4) \( 55^{\frac{4}{3}} \) Simplify \( 2^{\frac{2}{3}} \cdot 4^{\frac{2}{3}} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
To simplify \( 55^{\frac{4}{3}} \), you can break it down as follows: first, recognize that \( 55 = 5 \times 11 \). Thus: \[ 55^{\frac{4}{3}} = (5 \times 11)^{\frac{4}{3}} = 5^{\frac{4}{3}} \times 11^{\frac{4}{3}}. \] Now, handling \( 2^{\frac{2}{3}} \cdot 4^{\frac{2}{3}} \): Note that \( 4 = 2^2 \), so \( 4^{\frac{2}{3}} = (2^2)^{\frac{2}{3}} = 2^{\frac{4}{3}} \). Therefore: \[ 2^{\frac{2}{3}} \cdot 4^{\frac{2}{3}} = 2^{\frac{2}{3}} \cdot 2^{\frac{4}{3}} = 2^{\frac{2}{3} + \frac{4}{3}} = 2^{\frac{6}{3}} = 2^2 = 4. \] Thus, the final simplified result is \( 55^{\frac{4}{3}} \) and \( 2^{\frac{2}{3}} \cdot 4^{\frac{2}{3}} = 4 \).