Pregunta
upstudy study bank question image url

\( \begin{array}{llll}6 \text { a } \frac{1}{2 x}+\frac{3}{x} & \text { b } \frac{2}{3 y}+\frac{1}{y} & \text { c } \frac{3}{4 x}+\frac{1}{2 x} & \text { d } \frac{3}{x y}+\frac{2}{y} \\ \text { 41) } 7 \text { a } \frac{x}{4}+\frac{x+1}{2} & \text { b } \frac{x+2}{3}+\frac{x+7}{4} & \text { c } \frac{x-8}{4}+\frac{x+2}{5} & \text { d } \frac{x-4}{3}-\frac{x-5}{7}\end{array} \)

Ask by Stuart Daniels. in Albania
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Here are the simplified expressions for Problems 6 and 41: --- **Problem 6:** **a.** \[ \frac{1}{2x} + \frac{3}{x} = \frac{7}{2x} \] **b.** \[ \frac{2}{3y} + \frac{1}{y} = \frac{5}{3y} \] **c.** \[ \frac{3}{4x} + \frac{1}{2x} = \frac{5}{4x} \] **d.** \[ \frac{3}{xy} + \frac{2}{y} = \frac{3 + 2x}{xy} \] --- **Problem 41:** **a.** \[ \frac{x}{4} + \frac{x+1}{2} = \frac{3x + 2}{4} \] **b.** \[ \frac{x+2}{3} + \frac{x+7}{4} = \frac{7x + 29}{12} \] **c.** \[ \frac{x-8}{4} + \frac{x+2}{5} = \frac{9x - 32}{20} \] **d.** \[ \frac{x-4}{3} - \frac{x-5}{7} = \frac{4x - 13}{21} \] If you need further assistance or have more questions, feel free to ask!

Solución

Sure, let's simplify each of the given expressions step by step. --- ### **Problem 6** **a.** \[ \frac{1}{2x} + \frac{3}{x} \] **Simplification:** \[ \frac{1}{2x} + \frac{3}{x} = \frac{1}{2x} + \frac{6}{2x} = \frac{7}{2x} \] --- **b.** \[ \frac{2}{3y} + \frac{1}{y} \] **Simplification:** \[ \frac{2}{3y} + \frac{1}{y} = \frac{2}{3y} + \frac{3}{3y} = \frac{5}{3y} \] --- **c.** \[ \frac{3}{4x} + \frac{1}{2x} \] **Simplification:** \[ \frac{3}{4x} + \frac{1}{2x} = \frac{3}{4x} + \frac{2}{4x} = \frac{5}{4x} \] --- **d.** \[ \frac{3}{xy} + \frac{2}{y} \] **Simplification:** \[ \frac{3}{xy} + \frac{2}{y} = \frac{3}{xy} + \frac{2x}{xy} = \frac{3 + 2x}{xy} \] --- ### **Problem 41** **a.** \[ \frac{x}{4} + \frac{x+1}{2} \] **Simplification:** \[ \frac{x}{4} + \frac{x+1}{2} = \frac{x}{4} + \frac{2(x+1)}{4} = \frac{x + 2x + 2}{4} = \frac{3x + 2}{4} \] --- **b.** \[ \frac{x+2}{3} + \frac{x+7}{4} \] **Simplification:** \[ \frac{x+2}{3} + \frac{x+7}{4} = \frac{4(x+2)}{12} + \frac{3(x+7)}{12} = \frac{4x + 8 + 3x + 21}{12} = \frac{7x + 29}{12} \] --- **c.** \[ \frac{x-8}{4} + \frac{x+2}{5} \] **Simplification:** \[ \frac{x-8}{4} + \frac{x+2}{5} = \frac{5(x-8)}{20} + \frac{4(x+2)}{20} = \frac{5x - 40 + 4x + 8}{20} = \frac{9x - 32}{20} \] --- **d.** \[ \frac{x-4}{3} - \frac{x-5}{7} \] **Simplification:** \[ \frac{x-4}{3} - \frac{x-5}{7} = \frac{7(x-4)}{21} - \frac{3(x-5)}{21} = \frac{7x - 28 - 3x + 15}{21} = \frac{4x - 13}{21} \] --- If you have any further questions or need additional explanations for any of the steps, feel free to ask!

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the world of rational expressions has roots dating back to ancient civilizations? Early mathematicians like the Greeks and Babylonians were already working with fractions to solve various practical problems, such as land division or trade calculations. Fast forward to today, and those foundational concepts help students to solve modern algebraic equations! If you're tackling these types of rational expressions, remember that a common mistake is skipping the step of finding a common denominator. This can lead to errors in combining fractions. Always ensure you've simplified your fractions correctly and double-check each step. It's like following a recipe; miss an ingredient, and the final dish might not turn out as expected!

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad