\( \log _{2} x+2 \log _{4} y=4 \) sho.0 that \( x y=16 \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To solve the equation \( \log _{2} x + 2 \log _{4} y = 4 \), we start by rewriting \( \log_{4} y \) in terms of base 2. Since \( \log_{4} y = \frac{\log_{2} y}{\log_{2} 4} = \frac{\log_{2} y}{2} \), we can substitute this back into the equation: \[ \log_{2} x + 2\left(\frac{\log_{2} y}{2}\right) = 4 \] This simplifies to: \[ \log_{2} x + \log_{2} y = 4 \] Using the property of logarithms that states \( \log_{a} b + \log_{a} c = \log_{a} (bc) \), we can combine the logs: \[ \log_{2} (xy) = 4 \] This means that: \[ xy = 2^4 = 16 \] Thus, we have shown that \( xy = 16 \).