Pregunta
upstudy study bank question image url

Function Point \[ y=\cos (3 x) \quad\left(\frac{\pi}{4},-\frac{\sqrt{2}}{2}\right) \] (a) Find an equation of the tangent line to the graph of the function at the given polnt. (Let \( x \) be the Independent variable and \( y \) be the dependent variable.) \( y=\cos (3 x) \)

Ask by Welch Gross. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the tangent line to the graph of \( y = \cos(3x) \) at the point \( \left(\frac{\pi}{4}, -\frac{\sqrt{2}}{2}\right) \) is: \[ y = -\frac{3\sqrt{2}}{2} \left(x - \frac{\pi}{4}\right) - \frac{\sqrt{2}}{2} \]

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Mind Expander

To find the equation of the tangent line to the function \( y = \cos(3x) \) at the point \( \left( \frac{\pi}{4}, -\frac{\sqrt{2}}{2} \right) \), we first need to determine the derivative of the function, which represents the slope of the tangent line. The derivative is: \[ y' = -3\sin(3x). \] Now evaluate the derivative at \( x = \frac{\pi}{4} \): \[ y'\left( \frac{\pi}{4} \right) = -3\sin\left(3 \cdot \frac{\pi}{4}\right) = -3\sin\left(\frac{3\pi}{4}\right) = -3 \cdot \frac{\sqrt{2}}{2} = -\frac{3\sqrt{2}}{2}. \] Now that we have the slope, we can use the point-slope form of the line: \[ y - y_1 = m(x - x_1), \] where \( (x_1, y_1) = \left( \frac{\pi}{4}, -\frac{\sqrt{2}}{2} \right) \) and \( m = -\frac{3\sqrt{2}}{2} \). Substituting these values in: \[ y + \frac{\sqrt{2}}{2} = -\frac{3\sqrt{2}}{2}\left(x - \frac{\pi}{4}\right). \] This gives the equation of the tangent line at the point in question!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad