Pregunta
h) \( \frac{1-\cos ^{2} \theta}{\cos ^{2} \theta+2 \cos \theta+1}= \)
Ask by Nguyen Greene. in South Africa
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression simplifies to \( \tan^2\left(\frac{\theta}{2}\right) \).
Solución
We start with the expression:
(1 – cos²θ) / (cos²θ + 2cosθ + 1)
Step 1. Recognize that 1 – cos²θ is sin²θ, so the numerator becomes sin²θ.
Step 2. Notice that the denominator cos²θ + 2cosθ + 1 factors as (cosθ + 1)².
Thus, the expression simplifies to:
sin²θ / (cosθ + 1)²
Step 3. This can be rewritten as:
(sinθ / (cosθ + 1))²
Step 4. Using the half-angle identity:
tan(θ/2) = sinθ / (1 + cosθ)
we see that:
(sinθ / (1 + cosθ))² = tan²(θ/2)
Therefore, the simplified form of the expression is:
tan²(θ/2)
So, the final answer is:
tan²(θ/2)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
Let's simplify the expression step by step. First, recall the Pythagorean identity: \( 1 - \cos^2 \theta = \sin^2 \theta \). We can substitute this into the equation: \[ \frac{\sin^2 \theta}{\cos^2 \theta + 2\cos \theta + 1}. \] Next, notice that the denominator can be rewritten. The expression \( \cos^2 \theta + 2\cos \theta + 1 \) factors as: \[ (\cos \theta + 1)^2. \] Now we have: \[ \frac{\sin^2 \theta}{(\cos \theta + 1)^2}. \] Therefore, the simplified expression is: \[ \frac{\sin^2 \theta}{(\cos \theta + 1)^2}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium