Find the tangential and normal components of the acceleration vector for the curve \( \vec{r}(t)=\left\langle-4 t, 3 t^{3},-t^{2}\right\rangle \) at the point \( t=-1 \) \( \vec{a}(-1)=\vec{T}+\square \vec{N} \) Give your answers to two decimal places Submit Question
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the tangential and normal components of the acceleration vector for the curve \(\vec{r}(t)=\left\langle-4 t, 3 t^{3},-t^{2}\right\rangle \) at the point \( t=-1 \), we will first need to calculate the velocity and acceleration vectors, as well as the unit tangent and normal vectors. 1. **Calculate Velocity and Acceleration**: The velocity vector \(\vec{v}(t)\) is the derivative of \(\vec{r}(t)\): \[ \vec{v}(t) = \frac{d\vec{r}}{dt} = \left\langle -4, 9t^2, -2t \right\rangle \] At \(t = -1\): \[ \vec{v}(-1) = \left\langle -4, 9(-1)^2, -2(-1) \right\rangle = \left\langle -4, 9, 2 \right\rangle \] The acceleration vector \(\vec{a}(t)\) is the derivative of the velocity vector: \[ \vec{a}(t) = \frac{d\vec{v}}{dt} = \left\langle 0, 18t, -2 \right\rangle \] At \(t = -1\): \[ \vec{a}(-1) = \left\langle 0, 18(-1), -2 \right\rangle = \left\langle 0, -18, -2 \right\rangle \] 2. **Calculate the Magnitude of the Velocity**: The magnitude of the velocity vector at \(t = -1\): \[ |\vec{v}(-1)| = \sqrt{(-4)^2 + 9^2 + 2^2} = \sqrt{16 + 81 + 4} = \sqrt{101} \] 3. **Find the Unit Tangent Vector**: The unit tangent vector \(\vec{T}\) is given by: \[ \vec{T} = \frac{\vec{v}(-1)}{|\vec{v}(-1)|} = \frac{1}{\sqrt{101}} \left\langle -4, 9, 2 \right\rangle \] 4. **Find Tangential Acceleration**: The tangential component of the acceleration \(a_T\) is given by: \[ a_T = \frac{\vec{a}(-1) \cdot \vec{T}}{|\vec{T}|} = \vec{a}(-1) \cdot \vec{T} \] Calculating the dot product: \[ \vec{a}(-1) \cdot \vec{T} = \left\langle 0, -18, -2 \right\rangle \cdot \frac{1}{\sqrt{101}} \left\langle -4, 9, 2 \right\rangle = \frac{1}{\sqrt{101}} \left(0(-4) + -18(9) + -2(2)\right) = \frac{-162 - 4}{\sqrt{101}} = \frac{-166}{\sqrt{101}} \] Approximate \( a_T \): \[ a_T \approx \frac{-166}{10.05} \approx -16.52 \] 5. **Calculate Normal Acceleration**: The normal component \(a_N\) is given by: \[ a_N = |\vec{a}(-1)| - a_T \] The magnitude of \(\vec{a}(-1)\): \[ |\vec{a}(-1)| = \sqrt{0^2 + (-18)^2 + (-2)^2} = \sqrt{324 + 4} = \sqrt{328} \] Approximate \( a_N \): \[ a_N \approx \sqrt{328} + 16.52 \approx 18.13 + 16.52 \approx 34.65 \] Thus, we find: \[ \vec{a}(-1) = \vec{T} + a_N \vec{N} \] with \(a_T \approx -16.52\) and \( a_N \approx 34.65\).
