A project needs five filler panels of drywall, each of which must be \( 9 \frac{1}{2} \) inches wide. The drywall mechanic determines that the total width of the drywall needed to cut out the five pieces is \( \frac{95}{2} \) inches. Change this value to a mixed number. The five filler panels would need to be cut from a piece of drywall that is at least \( \square \) inches wide.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To convert \( \frac{95}{2} \) inches to a mixed number, first, divide 95 by 2. This gives you 47 with a remainder of 1, so \( \frac{95}{2} \) can be written as \( 47 \frac{1}{2} \) inches. Thus, the total width of the drywall needed is \( 47 \frac{1}{2} \) inches. When cutting out the five filler panels, you want to ensure that you have enough width for the panels plus some extra for adjustments. Therefore, you would need to source a piece of drywall that has at least \( 47 \frac{1}{2} \) inches in width to complete your project without any hassles. Happy drywalling!
