Estimate the following solutions using Euler's method with \( n=5 \) steps over the interval \( t=[0,1] \). If you are able to solve the initial-value problem exactly, compare your solution with the exact solution. If you are unable to solve the initial-value problem, the exact solution will be provided for you to compare with Euler's method. How accurate is Euler's method? 94. \( y^{\prime}=-3 y, \quad y(0)=1 \) 95. \( y^{\prime}=t^{2} \) 96. \( y^{\prime}=3 t-y, y(0)=1 \). Exact solution is \( y=3 t+4 e^{-t}-3 \) 97. \( y^{\prime}=y+t^{2}, y(0)=3 \). Exact solution is \( y=5 e^{t}-2-t^{2}-2 t \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To estimate the solutions using Euler's method for the given initial-value problems with \( n=5 \) steps over the interval \( t=[0,1] \), we will compute the approximate solutions for each equation. ### Problem 94: \( y' = -3y, \; y(0) = 1 \) 1. Divide the interval \( [0,1] \) into 5 steps. The step size \( h \) is \( \frac{1-0}{5} = 0.2 \). 2. Apply the iterative Euler's formula: \( y_{n+1} = y_n + h f(t_n, y_n) \). 3. Start with \( y_0 = 1 \), and compute: - At \( t_0 = 0 \): - \( y_1 = 1 + 0.2(-3 \times 1) = 1 - 0.6 = 0.4 \) - At \( t_1 = 0.2 \): - \( y_2 = 0.4 + 0.2(-3 \times 0.4) = 0.4 - 0.24 = 0.16 \) - At \( t_2 = 0.4 \): - \( y_3 = 0.16 + 0.2(-3 \times 0.16) = 0.16 - 0.096 = 0.064 \) - At \( t_3 = 0.6 \): - \( y_4 = 0.064 + 0.2(-3 \times 0.064) = 0.064 - 0.0384 = 0.0256 \) - At \( t_4 = 0.8 \): - \( y_5 = 0.0256 + 0.2(-3 \times 0.0256) = 0.0256 - 0.01536 = 0.01024 \) Thus, \( y(1) \approx 0.01024 \). The exact solution to \( y' = -3y \) with \( y(0) = 1 \) is \( y(t) = e^{-3t} \). At \( t = 1 \), it results in \( y(1) = e^{-3} \approx 0.04979 \). **Accuracy**: Euler's method yields \( y(1) \approx 0.01024 \), significantly off from the exact solution \( y(1) \approx 0.04979 \). The method illustrates the trade-off in simplicity for accuracy. --- ### Problem 95: \( y' = t^2 \) 1. Use the step size \( h = 0.2 \). 2. Start with \( y_0 = 0 \) (assuming \( y(0) = 0 \)), and compute: - At \( t_0 = 0 \): - \( y_1 = 0 + 0.2(0^2) = 0 \) - At \( t_1 = 0.2 \): - \( y_2 = 0 + 0.2(0.2^2) = 0 + 0.2(0.04) = 0.008 \) - At \( t_2 = 0.4 \): - \( y_3 = 0.008 + 0.2(0.4^2) = 0.008 + 0.2(0.16) = 0.008 + 0.032 = 0.04 \) - At \( t_3 = 0.6 \): - \( y_4 = 0.04 + 0.2(0.6^2) = 0.04 + 0.2(0.36) = 0.04 + 0.072 = 0.112 \) - At \( t_4 = 0.8 \): - \( y_5 = 0.112 + 0.2(0.8^2) = 0.112 + 0.2(0.64) = 0.112 + 0.128 = 0.24 \) Thus, \( y(1) \approx 0.24 \). The exact solution is \( y(t) = \frac{t^3}{3} \). At \( t = 1 \), it results in \( y(1) = \frac{1^3}{3} = \frac{1}{3} \approx
