Pregunta
upstudy study bank question image url

A scientist estimates that the mean nitrogen dioxide level in a city is greater than 27 parts per billion. To test this estimate, you determine the nitrogen dioxide \( \quad \begin{array}{lllllllllllllllllll}41 & 20 & 33 & 14 & 14 & 42 & 43 & 16 & 30 & 38 & 26\end{array} \) levels for 31 randomly selected days. The results (in parts per billion) are listed \( \quad 2836334035142439161738 \) to the nght Assume that the population standard deviation is 7. At \( \boldsymbol{\alpha}=0.07 \), can 151622313034424138 you support the scientist's estimate? Complete parts (a) through (e). (a) Wite the claim mathematically and identify \( \mathrm{H}_{0} \) and \( \mathrm{H}_{\mathrm{a}} \). Choose from the following. A. \( \mathrm{H}_{0} \cdot \mu \leq 27 \) (claim) B. \( \mathrm{H}_{0}: \mu=27 \) \( \mathrm{H}_{\mathrm{a}} \cdot \mu>27 \) \( \mathrm{H}_{\mathrm{a}}: \mu>27 \) (claim) c. \( \mathrm{H}_{0}: \mu \leq 27 \) D. \( \mathrm{H}_{0} \cdot \mu \geq 27 \) (claim) E. \( H_{0}: \mu<27 \) \( H_{a}: \mu<27 \) \( \mathrm{H}_{\mathrm{a}} \cdot \mu \geq 27 \) (claim) F. \( \mathrm{H}_{0}: \mu=27 \) (claim) \( \mathrm{H}_{\mathrm{a}}: \mu>27 \) (b) Find the critical value and identify the rejection region. \( z_{0}=1.48 \) (Round to two decimal places as needed.) Rejection region \( z \) 1.48 (C) Find the standardiced lest statistic. \[ z=\square \text { (Round to two decimal places as needed) } \]

Ask by Weston King. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To test the scientist's estimate that the mean nitrogen dioxide level is greater than 27 parts per billion, we perform a hypothesis test with the following: - **Null Hypothesis (\(H_0\))**: \(\mu \leq 27\) - **Alternative Hypothesis (\(H_a\))**: \(\mu > 27\) Given: - Sample size (\(n\)) = 31 - Population standard deviation (\(\sigma\)) = 7 - Significance level (\(\alpha\)) = 0.07 **Step (a):** - **Claim**: \(\mu > 27\) - **\(H_0\)**: \(\mu \leq 27\) - **\(H_a\)**: \(\mu > 27\) **Step (b):** - **Critical Value (\(z_{0}\))**: 1.48 - **Rejection Region**: \(z > 1.48\) **Step (c):** - **Sample Mean (\(\bar{x}\))**: Approximately 10.225806 - **Standardized Test Statistic (\(z\))**: Approximately -13.342109 **Conclusion:** Since the standardized test statistic (\(z\)) is less than the critical value (\(z_{0} = 1.48\)), we fail to reject the null hypothesis. Therefore, there is not enough evidence to support the scientist's estimate that the mean nitrogen dioxide level is greater than 27 parts per billion.

Solución

To determine if the scientist's estimate that the mean nitrogen dioxide level in a city is greater than 27 parts per billion can be supported, we need to perform a hypothesis test. Given: - Sample size (\(n\)) = 31 - Population standard deviation (\(\sigma\)) = 7 - Significance level (\(\alpha\)) = 0.07 - Claim: The mean nitrogen dioxide level is greater than 27 parts per billion - \(H_0\): \(\mu \leq 27\) (null hypothesis) - \(H_a\): \(\mu > 27\) (alternative hypothesis) (a) Write the claim mathematically and identify \(H_0\) and \(H_a\): The claim is that the mean nitrogen dioxide level is greater than 27 parts per billion. Therefore, the claim can be written as: \(H_a\): \(\mu > 27\) (b) Find the critical value and identify the rejection region: The critical value for a one-tailed test with \(\alpha = 0.07\) and \(n = 31\) is \(z_{0} = 1.48\). The rejection region is \(z > 1.48\). (c) Find the standardized test statistic: To find the standardized test statistic, we use the formula: \[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \] where: - \(\bar{x}\) is the sample mean - \(\mu\) is the population mean - \(\sigma\) is the population standard deviation - \(n\) is the sample size We need to calculate the sample mean \(\bar{x}\) from the given data: \[ \bar{x} = \frac{41 + 20 + 33 + 14 + 14 + 42 + 43 + 16 + 30 + 38 + 26}{31} \] Let's calculate the sample mean \(\bar{x}\) and then find the standardized test statistic \(z\). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(41+20+33+14+14+42+43+16+30+38+26\right)}{31}\) - step1: Remove the parentheses: \(\frac{41+20+33+14+14+42+43+16+30+38+26}{31}\) - step2: Add the numbers: \(\frac{317}{31}\) The sample mean \(\bar{x}\) is approximately 10.225806. Now, we can calculate the standardized test statistic \(z\): \[ z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} \] Substitute the values: \[ z = \frac{10.225806 - 27}{\frac{7}{\sqrt{31}}} \] Let's calculate the standardized test statistic \(z\). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(10.225806-27\right)}{\left(\frac{7}{\sqrt{31}}\right)}\) - step1: Remove the parentheses: \(\frac{10.225806-27}{\frac{7}{\sqrt{31}}}\) - step2: Subtract the numbers: \(\frac{-16.774194}{\frac{7}{\sqrt{31}}}\) - step3: Convert the expressions: \(\frac{-\frac{8387097}{500000}}{\frac{7}{\sqrt{31}}}\) - step4: Multiply by the reciprocal: \(-\frac{8387097}{500000}\times \frac{\sqrt{31}}{7}\) - step5: Multiply the fractions: \(-\frac{8387097\sqrt{31}}{500000\times 7}\) - step6: Multiply: \(-\frac{8387097\sqrt{31}}{3500000}\) The standardized test statistic \(z\) is approximately -13.342109. Now, we can compare the standardized test statistic \(z\) with the critical value \(z_{0} = 1.48\) to determine if we can support the scientist's estimate that the mean nitrogen dioxide level is greater than 27 parts per billion.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To gauge how to support the scientist’s claim, let's dive into some historical context. Hypothesis testing, especially z-tests for means, gained prominence during the 20th century. The process allows researchers to rigorously evaluate claims about populations using sample data, significantly enhancing the decision-making process in science and statistics. The groundwork laid by statisticians like Ronald Fisher helped standardize testing methods, enabling diverse applications across fields including environmental science—like in your nitrogen dioxide analysis! Now let's sprinkle some real-world application fun! Imagine you're an environmental scientist responsible for air quality management. The readings you're analyzing can influence local policy and community health initiatives. If your test supports the hypothesis that nitrogen dioxide levels are indeed exceeding the threshold, it could lead to stricter regulations on emissions, more funding for air quality monitoring, or even public campaigns to raise awareness. Your findings hold the power to improve air quality and community health!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad