Find the average rate of change of the function \( f(x)=\sqrt{x} \) from \( x_{1}=16 \) to \( x_{2}=25 \). The average rate of change is \( \square \). (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the average rate of change of the function \( f(x) = \sqrt{x} \) from \( x_1 = 16 \) to \( x_2 = 25 \), we use the formula: \[ \text{Average Rate of Change} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \] First, we calculate \( f(16) \) and \( f(25) \): \[ f(16) = \sqrt{16} = 4 \] \[ f(25) = \sqrt{25} = 5 \] Now we can plug these values into our formula: \[ \text{Average Rate of Change} = \frac{5 - 4}{25 - 16} = \frac{1}{9} \] So, the average rate of change is \( \frac{1}{9} \).
preguntas relacionadas
