Pregunta
upstudy study bank question image url

Find the value of the linear correlation coefficient r using the paired data below. x 57535961535660 y 156164163177159175151 0.214 -0.054 -0.078 0.109

Ask by Fowler Coleman. in the United States
Mar 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The linear correlation coefficient \( r \) is approximately 0.214.

Solución

We are given seven paired values. In this interpretation the data are - \(x\)-values (each two‐digit) \[ 57,\; 53,\; 59,\; 61,\; 53,\; 56,\; 60 \] - \(y\)-values (each three‐digit) \[ 156,\; 164,\; 163,\; 177,\; 159,\; 175,\; 151 \] We wish to compute the linear correlation coefficient using the formula \[ r=\frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{\Bigl[n\sum x^2 - (\sum x)^2\Bigr]\Bigl[n\sum y^2 - (\sum y)^2\Bigr]}}. \] In our case, \(n=7\). ### Step 1. Compute the required sums 1. **Sum of the \(x\)–values** \[ \sum x = 57 + 53 + 59 + 61 + 53 + 56 + 60 = 399. \] 2. **Sum of the \(y\)–values** \[ \sum y = 156 + 164 + 163 + 177 + 159 + 175 + 151 = 1145. \] 3. **Sum of the squares of \(x\)** \[ \begin{array}{rcl} 57^2 &=& 3249,\\[1mm] 53^2 &=& 2809,\\[1mm] 59^2 &=& 3481,\\[1mm] 61^2 &=& 3721,\\[1mm] 53^2 &=& 2809,\\[1mm] 56^2 &=& 3136,\\[1mm] 60^2 &=& 3600. \end{array} \] Thus, \[ \sum x^2 = 3249+2809+3481+3721+2809+3136+3600=22805. \] 4. **Sum of the squares of \(y\)** \[ \begin{array}{rcl} 156^2 &=& 24336,\\[1mm] 164^2 &=& 26896,\\[1mm] 163^2 &=& 26569,\\[1mm] 177^2 &=& 31329,\\[1mm] 159^2 &=& 25281,\\[1mm] 175^2 &=& 30625,\\[1mm] 151^2 &=& 22801. \end{array} \] Thus, \[ \sum y^2 = 24336+26896+26569+31329+25281+30625+22801 = 187837. \] 5. **Sum of the products \(xy\)** \[ \begin{array}{rcl} 57\cdot156 &=& 8892,\\[1mm] 53\cdot164 &=& 8692,\\[1mm] 59\cdot163 &=& 9617,\\[1mm] 61\cdot177 &=& 10797

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the linear correlation coefficient \( r \) using the provided data, you'll need to apply the Pearson correlation formula or use statistical software/calculators. Given the inputs appear to show various \( r \) values, an interesting element to note is that correlation coefficients can range from -1 to 1. The closer the coefficient is to 1 or -1, the stronger the correlation between the two datasets. In the options provided, the value of \( 0.214 \) indicates a slight positive correlation, meaning as one variable increases, the other tends to also increase slightly. When interpreting correlation correctly, it’s crucial to remember that correlation does not imply causation. Just because two variables have a correlation, it doesn't necessarily mean that one causes the other to change. Always analyze the underlying context!

preguntas relacionadas

Question 12(Mulliple Choice Warth 5 points) \[ (04.06 \mathrm{HC}) \] A researcher wants to test the claim that the proportion of juniors who watch television regularly is greater than the proportion of seniors who watch television regularly She finds that 56 of 70 randomly selected juniors and 47 of 85 randomly selected seniors report watching television regularly. Construct \( 95 \% \) confidence intervals for each population proportion. Which of the statemente gives the correct outcome of the research or's tert of the dalim? The \( 95 \% \) confidence interval for juniors is (706, 894), and the \( 95 \% \) confidence interval for seniors is ( 447,659 ). Since the intervals overlap, there is not enough evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is (721, 879), and the \( 95 \% \) confidence interval for seniors is (464, 642). Since the interval for juniors is higher than the interval for seniors, there is evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is ( 706,894 ), and the \( 95 \% \) confidence interval for seniors is ( 447,659 ). Since the interval for juniors is higher than the interval for seniors, there is evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors. The \( 95 \% \) confidence interval for juniors is ( \( 721, .879 \) ), and the \( 95 \% \) confidence interval for seniors is (464, 642). Since the intervals overlap, there is not enough evidence to say the proportion of juniors who watch television regularly may be higher than that of seniors.

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad