Pregunta
upstudy study bank question image url

A principal of \( \$ 3800 \) is invested at \( 7.25 \% \) interest, compounded annually. How much will the investment be worth after 12 years? Use the calculator provided and round your answer to the nearest dollar.

Ask by Salazar O'Quinn. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The investment will be worth approximately $8801 after 12 years.

Solución

To find the amount of money an investment will be worth after a certain period of time, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{100}\right)^n \] Where: - \( A \) is the amount of money after \( n \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate (in %), - \( n \) is the number of years. Given: - Principal amount (\( P \)) = $3800 - Annual interest rate (\( r \)) = 7.25% - Number of years (\( n \)) = 12 Substitute the given values into the formula: \[ A = 3800 \left(1 + \frac{7.25}{100}\right)^{12} \] Now, we can calculate the amount of money the investment will be worth after 12 years using the calculator provided. Calculate the value by following steps: - step0: Calculate: \(3800\left(1+\frac{7.25}{100}\right)^{12}\) - step1: Divide the terms: \(3800\left(1+\frac{29}{400}\right)^{12}\) - step2: Add the numbers: \(3800\left(\frac{429}{400}\right)^{12}\) - step3: Simplify: \(3800\times \frac{429^{12}}{400^{12}}\) - step4: Rewrite the expression: \(200\times 19\times \frac{429^{12}}{400^{12}}\) - step5: Rewrite the expression: \(200\times 19\times \frac{429^{12}}{200^{12}\times 2^{12}}\) - step6: Reduce the numbers: \(19\times \frac{429^{12}}{200^{11}\times 2^{12}}\) - step7: Multiply the fractions: \(\frac{19\times 429^{12}}{4096\times 200^{11}}\) The investment of $3800 at an annual interest rate of 7.25% compounded annually will be worth approximately $8801.39 after 12 years.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the future value of an investment with compound interest, you can use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (in decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested. Given: \[ P = 3800 \] \[ r = 0.0725 \] (7.25% as a decimal) \[ n = 1 \] (compounded annually) \[ t = 12 \] Plugging the values into the formula: \[ A = 3800 \left(1 + \frac{0.0725}{1}\right)^{1 \times 12} \] \[ A = 3800 \left(1 + 0.0725\right)^{12} \] \[ A = 3800 \left(1.0725\right)^{12} \] \[ A = 3800 \times 2.296928 (approximately) \] \[ A \approx 8718.24 \] Rounding to the nearest dollar, the investment will be worth approximately \( \$8718 \) after 12 years.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad