Questions A. Rationalise the denominators of the following expressions: \( \begin{array}{ll}\text { 1. } \frac{3}{\sqrt{6}} & \text { 2. } \frac{2}{5 \sqrt{2}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To rationalise the denominator of \( \frac{3}{\sqrt{6}} \), we multiply the numerator and denominator by \( \sqrt{6} \). This gives us \( \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2} \). Voilà! The pesky square root is gone from the denominator! For \( \frac{2}{5\sqrt{2}} \), we can again eliminate the square root by multiplying both the top and bottom by \( \sqrt{2} \). This transforms the expression into \( \frac{2\sqrt{2}}{5\cdot 2} = \frac{2\sqrt{2}}{10} = \frac{\sqrt{2}}{5} \). Now it’s smooth sailing!
