Pregunta
upstudy study bank question image url

Question Use the disk method to find the volume of the solid of revolution bounded by the \( x \)-axis and the graphs of \( f(x)=3 \sqrt{6 \sin x}, x=\frac{2 \pi}{3} \), and \( x=\pi \) rotated about the \( x \)-axis. Enter your answer in terms of \( \pi \).

Ask by Mccoy Sandoval. in the United States
Jan 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the solid is \( 27\pi \).

Solución

To find the volume of the solid of revolution using the disk method, follow these steps: 1. **Identify the Function and Bounds:** - The function given is \( f(x) = 3 \sqrt{6 \sin x} \). - The region is bounded by \( x = \frac{2\pi}{3} \) and \( x = \pi \) along the \( x \)-axis. 2. **Set Up the Disk Method Integral:** - When revolving around the \( x \)-axis, the volume \( V \) is given by: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] - Plugging in the given function and bounds: \[ V = \pi \int_{\frac{2\pi}{3}}^{\pi} \left(3 \sqrt{6 \sin x}\right)^2 \, dx \] 3. **Simplify the Integrand:** \[ \left(3 \sqrt{6 \sin x}\right)^2 = 9 \times 6 \sin x = 54 \sin x \] So the integral becomes: \[ V = 54\pi \int_{\frac{2\pi}{3}}^{\pi} \sin x \, dx \] 4. **Evaluate the Integral:** \[ \int \sin x \, dx = -\cos x \] Applying the limits: \[ V = 54\pi \left[ -\cos x \right]_{\frac{2\pi}{3}}^{\pi} = 54\pi \left( -\cos \pi + \cos \frac{2\pi}{3} \right) \] \[ \cos \pi = -1 \quad \text{and} \quad \cos \frac{2\pi}{3} = -\frac{1}{2} \] Substituting these values: \[ V = 54\pi \left( -(-1) + \left(-\frac{1}{2}\right) \right) = 54\pi \left( 1 - \frac{1}{2} \right) = 54\pi \times \frac{1}{2} = 27\pi \] **Final Answer:** \[ 27\pi \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the volume of the solid of revolution using the disk method, we start by identifying the bounds of integration which are \( x = \frac{2\pi}{3} \) and \( x = \pi \). The volume \( V \) is given by the integral: \[ V = \pi \int_{a}^{b} [f(x)]^2 \, dx \] Substituting our function \( f(x) = 3 \sqrt{6 \sin x} \) into the formula gives: \[ V = \pi \int_{\frac{2\pi}{3}}^{\pi} [3 \sqrt{6 \sin x}]^2 \, dx \] This simplifies to: \[ V = \pi \int_{\frac{2\pi}{3}}^{\pi} 54 \sin x \, dx \] Now we compute the integral: \[ V = 54\pi \int_{\frac{2\pi}{3}}^{\pi} \sin x \, dx \] The integral of \( \sin x \) is \( -\cos x \), so we evaluate the definite integral from \( \frac{2\pi}{3} \) to \( \pi \): \[ V = 54\pi \left[-\cos x\right]_{\frac{2\pi}{3}}^{\pi} \] Calculating the boundaries: \[ = 54\pi \left[(-\cos(\pi)) - (-\cos(\frac{2\pi}{3}))\right] \] \[ = 54\pi [1 - \left(-\frac{1}{2}\right)] \] \[ = 54\pi \left(\frac{3}{2}\right) \] \[ = 81\pi \] Therefore, the volume of the solid of revolution is: \[ \boxed{81\pi} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad