Pregunta

Prove that the half-angle identity for tangent can be expressed as \( \tan \left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \) starting from the definitions of sine and cosine.

Ask by Chambers Schneider. in South Africa
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \]

Solución

To prove the half-angle identity for tangent: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x}, \] we'll start from the fundamental definitions of sine and cosine and use some basic trigonometric identities. Here's a step-by-step derivation: ### Step 1: Express \(\tan\left(\frac{x}{2}\right)\) in Terms of Sine and Cosine By definition, the tangent of an angle is the ratio of its sine to its cosine. Therefore: \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} \] ### Step 2: Use the Double-Angle Formulas for Sine and Cosine Recall the double-angle formulas for sine and cosine: \[ \sin x = 2 \sin\left(\frac{x}{2}\right) \cos\left(\frac{x}{2}\right) \] \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) = 1 - 2 \sin^2\left(\frac{x}{2}\right) \] From the second identity, we can solve for \(\sin^2\left(\frac{x}{2}\right)\): \[ \sin^2\left(\frac{x}{2}\right) = \frac{1 - \cos x}{2} \] Similarly, solve for \(\cos^2\left(\frac{x}{2}\right)\): \[ \cos^2\left(\frac{x}{2}\right) = \frac{1 + \cos x}{2} \] ### Step 3: Substitute Back into the Expression for \(\tan\left(\frac{x}{2}\right)\) Using the expressions for \(\sin\left(\frac{x}{2}\right)\) and \(\cos\left(\frac{x}{2}\right)\), we have: \[ \sin\left(\frac{x}{2}\right) = \sqrt{\frac{1 - \cos x}{2}} \] \[ \cos\left(\frac{x}{2}\right) = \sqrt{\frac{1 + \cos x}{2}} \] Thus, \[ \tan\left(\frac{x}{2}\right) = \frac{\sqrt{\frac{1 - \cos x}{2}}}{\sqrt{\frac{1 + \cos x}{2}}} = \sqrt{\frac{1 - \cos x}{1 + \cos x}} \] ### Step 4: Rationalize the Expression To eliminate the square root, multiply the numerator and denominator by the conjugate \(\sqrt{1 - \cos x}\): \[ \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{1 - \cos x}{\sin x} \] Here’s why: 1. Note that \(1 - \cos^2 x = \sin^2 x\), which implies \(\sin x = \sqrt{1 - \cos^2 x}\). 2. Therefore, \[ \sqrt{\frac{1 - \cos x}{1 + \cos x}} = \frac{1 - \cos x}{\sqrt{(1 + \cos x)(1 - \cos x)}} = \frac{1 - \cos x}{\sin x} \] ### Conclusion Putting it all together, we have shown that: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x} \] This completes the proof of the half-angle identity for tangent.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To prove the half-angle identity for tangent, we start with the definitions of sine and cosine in terms of the angle. From the double angle formulas, we know: \[ \cos x = \cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right) \] and \[ \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right). \] Now, let's express \(\tan\left(\frac{x}{2}\right)\): \[ \tan\left(\frac{x}{2}\right) = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)}. \] Now, we need to manipulate the expression \(\frac{1 - \cos x}{\sin x}\). First, we will substitute our earlier expressions: 1. Substitute for \(\sin x\): \[ \sin x = 2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right). \] 2. So, we rewrite \(\frac{1 - \cos x}{\sin x}\): \[ \frac{1 - \cos x}{\sin x} = \frac{1 - \left(\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} = \frac{1 - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}. \] 3. Now, recall that \(1 = \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right)\). Thus we have: \[ 1 - \cos x = 1 - \left(\cos^2\left(\frac{x}{2}\right) - \sin^2\left(\frac{x}{2}\right)\right) = 1 - \cos^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right) = \sin^2\left(\frac{x}{2}\right) + \sin^2\left(\frac{x}{2}\right). \] 4. Simplifying gives: \[ = 2\sin^2\left(\frac{x}{2}\right), \] 5. Therefore, substituting back into our main equation gives us: \[ \frac{2\sin^2\left(\frac{x}{2}\right)}{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)} = \frac{\sin\left(\frac{x}{2}\right)}{\cos\left(\frac{x}{2}\right)} = \tan\left(\frac{x}{2}\right). \] Hence, we have successfully shown that: \[ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos x}{\sin x}, \] proving the half-angle identity for tangent!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad