Pregunta
upstudy study bank question image url

QUESTION 2 Given the geometric sequence: \( \frac{9}{2} ; 9 ; 18 ; \ldots ; 2304 \) 2.1.1 Determine the value of \( r \), the common ratio. 2.1.2 How many terms are there in the sequence? Given: \( \sum_{k=1}^{\infty} 6(m)^{k-1}=12 \). Determine the value of \( m \). The \( 3^{\text {rd }} \) term of a geometric series is 18 and the \( 5^{\text {th }} \) term is 162 . Determine the sum of the first 7 terms, where \( r<0 \). The general term of a quadratic number pattern is \( T_{n}=a n^{2}+b n+c \) and its first term is 8 . The general term of the first differences of the pattern is \( t_{k}=4 k-2 \). 2.4.1 Determine the next TWO terms of the quadratic number pattern \( T_{n} \). 2.4) 2.4.2 Hence, or otherwise, show that the general term of the quadratic number pattern is given by \( T_{n}=2 n^{2}-4 n+10 \). 2.4.3 Which term of the quadratic number pattern will be equal to 3050 ? 2. 2. 2.

Ask by Moran Romero. in South Africa
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

**Solutions:** 1. **Common Ratio (\( r \))**: - \( r = 2 \) 2. **Number of Terms**: - There are 10 terms in the sequence. 3. **Value of \( m \)**: - \( m = \frac{1}{2} \) 4. **Sum of the First 7 Terms**: - The sum is 1094. 5. **Next Two Terms of the Quadratic Pattern**: - \( T_2 = 10 \) - \( T_3 = 16 \) 6. **General Term of the Quadratic Pattern**: - \( T_n = 2n^2 - 4n + 10 \) 7. **Term Equal to 3050**: - The term is \( T_{20} = 3050 \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

The common ratio \( r \) for the geometric sequence can be found by dividing any term by its preceding term. In this case, \( r = \frac{9}{\frac{9}{2}} = 2 \). To determine the number of terms, we use the formula for the \( n^{th} \) term of a geometric sequence: \( a_n = a_1 \cdot r^{(n-1)}\). Setting \( a_n = 2304 \), we can solve for \( n \), finding it equals 9. In the problem involving the infinite series, we know \( \sum_{k=1}^{\infty} 6(m)^{k-1} = 12 \). This can be rearranged to find \( m \) using the formula for the sum of an infinite geometric series, yielding \( m = \frac{1}{3} \). For the geometric series given with the 3rd and 5th terms, we can find the first term \( a \) and common ratio \( r \) (noting that \( r < 0 \)), and apply the sum formula for the first 7 terms, arriving at our desired answer. The general term of a quadratic pattern can be analyzed by examining the first differences. Knowing \( t_k = 4k - 2 \) lets us derive the sequence of \( T_n \) easily. The characteristic of quadratics shows that the second differences are constant, so from this information, we conclude \( T_n = 2n^2 - 4n + 10 \) is indeed the correct form. To find which term equals 3050, we set \( 3050 = 2n^2 - 4n + 10 \) and solve the resulting quadratic equation.

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad