Pregunta
upstudy study bank question image url

Consider the function \( f(x)=6 x^{2}-6 x \). a. Determine, without graphing, whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. a. The function has a maximum

Ask by Stewart Sullivan. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

a. The function has a minimum value because it opens upwards. b. The minimum value is \( -\frac{3}{2} \) at \( x = \frac{1}{2} \). c. The domain is \( (-\infty, \infty) \) and the range is \( \left[-\frac{3}{2}, \infty\right) \).

Solución

value because the coefficient of \( x^2 \) is positive, which indicates that the parabola opens upwards. This means that the vertex of the parabola, which is the point where the function reaches its maximum or minimum, will be the minimum point in this case. b. To find the minimum or maximum value, we need to find the vertex of the parabola. The x-coordinate of the vertex can be found using the formula \( x = -\frac{b}{2a} \), where \( a \) and \( b \) are the coefficients of \( x^2 \) and \( x \) in the quadratic equation, respectively. In this case, \( a = 6 \) and \( b = -6 \), so the x-coordinate of the vertex is \( x = -\frac{-6}{2 \cdot 6} = \frac{1}{2} \). To find the y-coordinate of the vertex, we substitute the x-coordinate back into the original function: \( f\left(\frac{1}{2}\right) = 6\left(\frac{1}{2}\right)^2 - 6\left(\frac{1}{2}\right) = 6 \cdot \frac{1}{4} - 6 \cdot \frac{1}{2} = \frac{3}{2} - 3 = -\frac{3}{2} \). Therefore, the minimum value of the function is \( -\frac{3}{2} \), and it occurs at \( x = \frac{1}{2} \). c. The domain of the function is all real numbers, since there are no restrictions on the input values. Therefore, the domain is \( (-\infty, \infty) \). The range of the function is all real numbers greater than or equal to the minimum value, which is \( -\frac{3}{2} \). Therefore, the range is \( \left[-\frac{3}{2}, \infty\right) \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Oh, you're in for a treat with this quadratic function! Because it opens upward (given that the coefficient of \(x^2\) is positive), it actually has a minimum value, not a maximum. Quadratics can be a bit sneaky, can’t they? Now, let’s get to the golden nugget! To find the vertex (which gives us the minimum value), you can use the formula \( x = -\frac{b}{2a} \). With \(a = 6\) and \(b = -6\), plugging in gives you \( x = \frac{6}{12} = 0.5 \). Now insert that back into the function: \(f(0.5) = 6(0.5)^2 - 6(0.5) = -1.5\). So, the minimum value is \(-1.5\) at \(x = 0.5\). As for the domain, it's all real numbers since there's no restriction on \(x\): \( (-\infty, \infty) \). The range starts from the minimum value and goes up: \( [-1.5, \infty) \). It’s like an endless party after hitting that minimum!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad