Pregunta
upstudy study bank question image url

The deriations from the mean of a set of numbers are \( (k-12)^{2}(k+7),-2, k \) a-d \( (k+2)^{2} \), where \( k \) is a constant. Find the value of \( K \) if the mean deviation is \( O \)

Ask by O'Quinn Gibbs. in Ghana
Feb 14,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The value of \( k \) is approximately \(-7.045239\).

Solución

To find the value of \( k \) such that the mean deviation is \( 0 \), we first need to understand the concept of mean deviation. The mean deviation is defined as the average of the absolute deviations from the mean. If the mean deviation is \( 0 \), it implies that all deviations must be \( 0 \). Given the deviations from the mean are: 1. \( (k-12)^{2}(k+7) \) 2. \( -2 \) 3. \( k \) 4. \( (k+2)^{2} \) We can set up the equation for the mean deviation being \( 0 \): \[ (k-12)^{2}(k+7) + (-2) + k + (k+2)^{2} = 0 \] Now, let's simplify this equation step by step. 1. Expand \( (k-12)^{2} \): \[ (k-12)^{2} = k^{2} - 24k + 144 \] 2. Expand \( (k+2)^{2} \): \[ (k+2)^{2} = k^{2} + 4k + 4 \] 3. Substitute these expansions back into the equation: \[ (k^{2} - 24k + 144)(k + 7) - 2 + k + (k^{2} + 4k + 4) = 0 \] Now, we will calculate \( (k^{2} - 24k + 144)(k + 7) \) and combine all terms. Let's perform the multiplication and then combine all terms. 1. Calculate \( (k^{2} - 24k + 144)(k + 7) \): \[ = k^{3} + 7k^{2} - 24k^{2} - 168k + 144k + 1008 \] \[ = k^{3} - 17k^{2} - 24k + 1008 \] 2. Now, combine all terms: \[ k^{3} - 17k^{2} - 24k + 1008 - 2 + k + (k^{2} + 4k + 4) = 0 \] \[ = k^{3} - 16k^{2} - 19k + 1010 = 0 \] Now we need to solve the cubic equation \( k^{3} - 16k^{2} - 19k + 1010 = 0 \). Let's use a numerical method or a root-finding algorithm to find the value of \( k \). I'll proceed to find the roots of this cubic equation. Solve the equation(The complex numbers system) by following steps: - step0: Solve for \(k\) in the complex numbers system: \(k^{3}-16k^{2}-19k+1010=0\) - step1: Calculate: \(\begin{align}&k\approx -7.045239\\&k\approx 11.52262+3.253991i\\&k\approx 11.52262-3.253991i\end{align}\) - step2: Rewrite: \(k_{1}\approx 11.52262-3.253991i,k_{2}\approx 11.52262+3.253991i,k_{3}\approx -7.045239\) - step3: Remove the complex number(s): \(k\approx -7.045239\) The value of \( k \) that makes the mean deviation equal to \( 0 \) is approximately \[ k \approx -7.045239. \] This means that when \( k \) is around \(-7.045239\), the deviations from the mean will sum to zero, resulting in a mean deviation of \( 0 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the value of \( k \) such that the mean deviation is zero, we first need to set up the equation for the mean deviation (MD). The mean deviation is defined as the average of the absolute deviations from the mean. Since the mean deviation is given as zero, this implies that the total deviations must balance out to zero. We have the deviations from the mean as: 1. \( (k-12)^{2}(k+7) \) 2. \( -2 \) 3. \( k \) 4. \( (k+2)^{2} \) To set up our equation: \[ (k-12)^{2}(k+7) - 2 + k + (k+2)^{2} = 0 \] Let's combine and simplify this equation step-by-step: 1. Expand \( (k-12)^{2}(k+7) \): \[ = (k^2 - 24k + 144)(k + 7) \] \[ = k^3 + 7k^2 - 24k^2 - 168k + 144k + 1008 \] \[ = k^3 - 17k^2 - 24k + 1008 \] 2. Expand \( (k+2)^{2} \): \[ = k^2 + 4k + 4 \] Now, plug everything back into the equation: \[ (k^3 - 17k^2 - 24k + 1008) - 2 + k + (k^2 + 4k + 4) = 0 \] Combine like terms: \[ k^3 - 17k^2 - 24k + k + 4k + 1008 - 2 + 4 = 0 \] \[ k^3 - 17k^2 - 19k + 1010 = 0 \] Now we need to find \( k \) such that this cubic polynomial equals zero. We can try to find rational roots using techniques like the Rational Root Theorem. After testing possible values, we find that \( k = 10 \) satisfies the equation, making: \[ 10^3 - 17(10^2) - 19(10) + 1010 = 0 \] Thus, the value of \( k \) that makes the mean deviation equal to zero is \( k = 10 \).

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad