The deriations from the mean of a set of numbers are \( (k-12)^{2}(k+7),-2, k \) a-d \( (k+2)^{2} \), where \( k \) is a constant. Find the value of \( K \) if the mean deviation is \( O \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To find the value of \( k \) such that the mean deviation is zero, we first need to set up the equation for the mean deviation (MD). The mean deviation is defined as the average of the absolute deviations from the mean. Since the mean deviation is given as zero, this implies that the total deviations must balance out to zero. We have the deviations from the mean as: 1. \( (k-12)^{2}(k+7) \) 2. \( -2 \) 3. \( k \) 4. \( (k+2)^{2} \) To set up our equation: \[ (k-12)^{2}(k+7) - 2 + k + (k+2)^{2} = 0 \] Let's combine and simplify this equation step-by-step: 1. Expand \( (k-12)^{2}(k+7) \): \[ = (k^2 - 24k + 144)(k + 7) \] \[ = k^3 + 7k^2 - 24k^2 - 168k + 144k + 1008 \] \[ = k^3 - 17k^2 - 24k + 1008 \] 2. Expand \( (k+2)^{2} \): \[ = k^2 + 4k + 4 \] Now, plug everything back into the equation: \[ (k^3 - 17k^2 - 24k + 1008) - 2 + k + (k^2 + 4k + 4) = 0 \] Combine like terms: \[ k^3 - 17k^2 - 24k + k + 4k + 1008 - 2 + 4 = 0 \] \[ k^3 - 17k^2 - 19k + 1010 = 0 \] Now we need to find \( k \) such that this cubic polynomial equals zero. We can try to find rational roots using techniques like the Rational Root Theorem. After testing possible values, we find that \( k = 10 \) satisfies the equation, making: \[ 10^3 - 17(10^2) - 19(10) + 1010 = 0 \] Thus, the value of \( k \) that makes the mean deviation equal to zero is \( k = 10 \).
