Pregunta
Find the partial sum \( S_{8} \) for the geometric sequence with \( a=2, r=2 \). \( S_{8}= \) Question Help: \( \square \) Video Submit Question
Ask by Barnett Vaughan. in the United States
Feb 14,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The partial sum \( S_{8} \) is 510.
Solución
To find the sum of the first 8 terms of a geometric sequence with a = 2 and r = 2, use the formula:
Sₙ = a( rⁿ – 1 ) / (r – 1)
For n = 8:
S₈ = 2(2⁸ – 1) / (2 – 1)
S₈ = 2(256 – 1) / 1
S₈ = 2(255)
S₈ = 510
Thus, the partial sum S₈ is 510.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
The formula for the partial sum \( S_n \) of a geometric sequence is given by: \[ S_n = a \frac{1 - r^n}{1 - r} \] For your sequence where \( a = 2 \) and \( r = 2 \), we want to find \( S_8 \). Plugging in the values, we get: \[ S_8 = 2 \frac{1 - 2^8}{1 - 2} = 2 \frac{1 - 256}{-1} = 2 \cdot 255 = 510 \] So, \( S_{8} = 510 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium