Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To solve the equation \( 16 x^{2} + 4 y^{2} + 32 x + 16 y - 32 = 0 \), let's first rewrite it in a more recognizable form. You can start by isolating the constant term on one side: \[ 16 x^{2} + 32 x + 4 y^{2} + 16 y = 32. \] Now, group the terms involving \( x \) and \( y \) separately and complete the square for both variables. Completing the square for \( x \): \[ 16(x^{2} + 2x) = 16((x+1)^{2} - 1) = 16(x + 1)^{2} - 16. \] For \( y \): \[ 4(y^{2} + 4y) = 4((y+2)^{2} - 4) = 4(y + 2)^{2} - 16. \] Substituting these into the equation: \[ 16(x + 1)^{2} - 16 + 4(y + 2)^{2} - 16 = 32. \] Simplifying gives us: \[ 16(x + 1)^{2} + 4(y + 2)^{2} - 32 = 32. \] Finally, we have: \[ 16(x + 1)^{2} + 4(y + 2)^{2} = 64. \] Dividing everything by 64 results in the standard form of an ellipse: \[ \frac{(x + 1)^{2}}{4} + \frac{(y + 2)^{2}}{16} = 1, \] which describes an ellipse centered at \((-1, -2)\) with semi-major axis \(4\) (along the \(y\)-axis) and semi-minor axis \(2\) (along the \(x\)-axis). This beautiful shape is a classic representation of an ellipse, frequently found in nature, from the orbits of planets to the reflection patterns in a pool of still water. Such math connects deeply to our universe!
