Pregunta
upstudy study bank question image url

The Thumber of people with the flu during an epidemic is a function, \( f \), of the number of days, \( d \), since the epidemic began. The equation \( f(d)=50 \cdot\left(\frac{3}{2}\right)^{d} \) defines \( f \). a. How many people had the flu at the beginning of the epidemic? Select Choice \( \checkmark \) b. How quickly is the flu spreading? Each day, the number of infected people grows by a factor of Select Choice \( \vee \). c. What does \( f(1) \) mean in this situation? This represents the number of people with the flu 1 day Select Choice \( \checkmark \) the epidemic began.

Ask by Campbell Bob. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **a.** 50 people had the flu at the beginning. - **b.** Each day, the number of infected people grows by a factor of \( \frac{3}{2} \). - **c.** \( f(1) \) represents the number of people with the flu 1 day after the epidemic began.

Solución

Let's address each part of the problem step by step. --- ### **a. How many people had the flu at the beginning of the epidemic?** To find the number of people who had the flu at the **beginning** of the epidemic, we evaluate the function \( f(d) \) at \( d = 0 \) days. \[ f(0) = 50 \cdot \left(\frac{3}{2}\right)^{0} = 50 \cdot 1 = 50 \] **Answer:** **50 people** had the flu at the beginning of the epidemic. --- ### **b. How quickly is the flu spreading?** The function \( f(d) = 50 \cdot \left(\frac{3}{2}\right)^{d} \) indicates exponential growth. The base of the exponential term, \( \frac{3}{2} \), represents the **daily growth factor**. \[ \text{Daily Growth Factor} = \frac{3}{2} = 1.5 \] **Answer:** Each day, the number of infected people grows by a factor of **\( \frac{3}{2} \)** (or **1.5 times**). --- ### **c. What does \( f(1) \) mean in this situation?** Evaluating \( f(1) \) gives the number of people infected **1 day** after the epidemic began. \[ f(1) = 50 \cdot \left(\frac{3}{2}\right)^{1} = 50 \cdot \frac{3}{2} = 75 \] **Interpretation:** \( f(1) \) represents the number of people with the flu **1 day after** the epidemic began. --- **Summary of Answers:** - **a.** 50 people - **b.** Each day, the number grows by a factor of \( \frac{3}{2} \) - **c.** The number of people with the flu 1 day after the epidemic began

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s dive into the fun side of flu dynamics! At the outbreak's onset, \( f(0) \) gives us a glimpse of initial chaos, with \( f(0) = 50 \) indicating 50 unfortunate souls were already feeling under the weather. It's like the starter pistol of the flu race! Now, for the flu’s spread, every day it multiplies by \( \frac{3}{2} \) or \( 1.5 \), meaning it grows by 50% daily. Picture that! It's like your favorite plant doubling in size each day—imagine a forest of flu! And when evaluating \( f(1) \), it’s the count of folks grappling with the flu just one day into this viral adventure, emphasizing how quickly it can escalate! Who knew a day could alter the scene so drastically?

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad