Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
To explore the isomorphism between
and
, let’s first define these groups.
The group
consists of integers less than
that are coprime to
, equipped with multiplication modulo
.
For
, the integers less than 5 are {1, 2, 3, 4}. The coprime integers are all of them, so
with the multiplication being:
which is cyclic of order 4.
For
, the integers less than 10 are {1, 2, 3, 4, 5, 6, 7, 8, 9}. The coprime integers are {1, 3, 7, 9}. Thus,
and it also forms a group under multiplication modulo 10:
Therefore,
is isomorphic to
.
Now, let’s look at
. The integers less than 12 are {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11}, and the coprime integers are {1, 5, 7, 11}, so
.
The group
has only 4 elements, and its structure is
which is non-cyclic.
Since
and
are cyclic groups of order 4, and
has a different structure, we conclude that
is not isomorphic to
or
.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium