Pregunta
Beschreibe, welche Eigenschaften der Graph einer quadratischen Funktion
besitzt, wenn
,
b)
,
c)
,
d)
, e)
,
b)
c)
d)
Ask by Ryan Simpson. in Austria
Mar 21,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
-
a)
: - Die Parabel ist nach oben geöffnet.
- Der Scheitelpunkt ist ein Minimum.
- Für große
strebt gegen .
-
b)
: - Die Parabel ist nach unten geöffnet.
- Der Scheitelpunkt ist ein Maximum.
- Für große
strebt gegen .
-
c)
: - Die Parabel ist achsensymmetrisch zur
-Achse. - Der Scheitelpunkt liegt auf der
-Achse.
- Die Parabel ist achsensymmetrisch zur
-
d)
: - Der Graph schneidet den Ursprung.
-
ist eine Nullstelle der Funktion.
-
e)
: - Die Parabel ist achsensymmetrisch zur
-Achse und hat ihren Scheitelpunkt im Ursprung.
- Die Parabel ist achsensymmetrisch zur
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Como
Extra Insights
Wenn
, öffnet der Graph einer quadratischen Funktion nach oben und hat ein Minimum (den Scheitelpunkt), während er für
nach unten öffnet und ein Maximum hat. Der Scheitelpunkt ist bei beiden Fällen der tiefste oder höchste Punkt auf der Parabel.
Wenn
, ist der Graph symmetrisch zur y-Achse, was bedeutet, dass er an der Stelle
einen Scheitelpunkt hat. Ist
, schneidet die Parabel die x-Achse an der Stelle
, und der Graph wird durch den Ursprung skaliert. Bei
handelt es sich um die einfachste Form der Funktion:
, was eine schlichte, symmetrische Parabel aufweist.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium