Pregunta
Solve the square root equation. \[ \begin{array}{l}5-2 \sqrt{x}=11 \\ \text { no solution } \\ x=9 \\ x=3 \\ x=9, x=3\end{array} \]
Ask by Ortiz Alexander. in the United States
Feb 28,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
There is no solution to the equation.
Solución
We start with the equation:
5 - 2√x = 11.
Step 1. Isolate the term with the square root.
Subtract 5 from both sides:
5 - 2√x - 5 = 11 - 5,
which simplifies to:
-2√x = 6.
Step 2. Divide both sides by -2:
√x = 6 / (-2) = -3.
Step 3. Since the square root of any non-negative number (by definition) is non-negative, √x cannot equal -3.
Thus, there is no solution to the equation.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To solve the equation \( 5 - 2 \sqrt{x} = 11 \), we start by isolating the square root term: 1. Subtract 5 from both sides: \[ -2 \sqrt{x} = 6 \] 2. Divide both sides by -2: \[ \sqrt{x} = -3 \] Since the square root of a real number cannot be negative, we find that there is no solution to this equation. In conclusion, the answer is "no solution."

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium