Pregunta
upstudy study bank question image url

(ii) Find the perimeter of the garden. (iv) Find the length of wire required to fence the garden The area of a rectangle is \( 70 \mathrm{~cm}^{2} \) and it is 7 m broad. \( \begin{array}{ll}\text { i) Find its length } & \text { (ib) Find its perimeler }\end{array} \)

Ask by Vargas Sullivan. in Nepal
Feb 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the rectangle is 0.1 cm, the perimeter of the garden is 1400.2 cm, and the length of wire required to fence the garden is 1400.2 cm.

Solución

To solve the problem, we need to find the length of the rectangle first, and then we can calculate the perimeter and the length of wire required to fence the garden. ### Step 1: Find the Length of the Rectangle We know the area \( A \) of a rectangle is given by the formula: \[ A = \text{length} \times \text{width} \] Given: - Area \( A = 70 \, \text{cm}^2 \) - Width \( w = 7 \, \text{m} = 700 \, \text{cm} \) (since we need to convert meters to centimeters) We can rearrange the formula to find the length \( l \): \[ l = \frac{A}{w} \] Now, substituting the known values: \[ l = \frac{70 \, \text{cm}^2}{700 \, \text{cm}} \] ### Step 2: Calculate the Length Let's perform the calculation: \[ l = \frac{70}{700} = 0.1 \, \text{cm} \] ### Step 3: Find the Perimeter of the Rectangle The perimeter \( P \) of a rectangle is given by the formula: \[ P = 2 \times (\text{length} + \text{width}) \] Substituting the values we have: \[ P = 2 \times (0.1 \, \text{cm} + 700 \, \text{cm}) \] ### Step 4: Calculate the Perimeter Now, let's calculate the perimeter: \[ P = 2 \times (0.1 + 700) = 2 \times 700.1 = 1400.2 \, \text{cm} \] ### Step 5: Length of Wire Required to Fence the Garden The length of wire required to fence the garden is equal to the perimeter of the garden. Therefore, the length of wire required is: \[ \text{Length of wire} = 1400.2 \, \text{cm} \] ### Summary of Results - Length of the rectangle: \( 0.1 \, \text{cm} \) - Perimeter of the garden: \( 1400.2 \, \text{cm} \) - Length of wire required to fence the garden: \( 1400.2 \, \text{cm} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the length of the garden, use the formula for the area of a rectangle, which is Area = Length × Width. Given that the area is \( 70 \, \text{cm}^2 \) and the width is \( 7 \, \text{m} \) (which is equivalent to \( 700 \, \text{cm} \)), we can rearrange the formula to find the length: \[ \text{Length} = \frac{\text{Area}}{\text{Width}} = \frac{70}{7} = 10 \, \text{cm}. \] Now, to find the perimeter, use the formula for the perimeter of a rectangle, which is Perimeter = 2 × (Length + Width). Substituting the length and width: \[ \text{Perimeter} = 2 \times (10 \, \text{cm} + 700 \, \text{cm}) = 2 \times 710 \, \text{cm} = 1420 \, \text{cm} \] or \( 14.2 \, \text{m} \). To fence the garden, you would need a wire that is equal to the perimeter calculated. So, you would require \( 14.2 \, \text{m} \) of wire to complete your garden fence. Happy gardening!

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad