\( \begin{array}{ll}\text { a) } \frac{1}{11}-\frac{1}{33} & \text { d) } \frac{13}{30}-\frac{2}{45} \\ \text { б) } \frac{7}{11}-\frac{7}{12} & \text { e) } \frac{7}{15}-\frac{2}{5} \\ \text { e) } \frac{5}{9}-\frac{7}{18} & \text { жс) } \frac{4}{5}-\frac{5}{8} \\ \text { г) } \frac{8}{21}-\frac{4}{35} & \text { () } \frac{7}{24}-\frac{5}{18}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To approach these fraction problems, remember to find a common denominator before performing any subtraction. For example, in the first equation \( \frac{1}{11}-\frac{1}{33} \), the least common denominator is 33. Rewrite \( \frac{1}{11} \) as \( \frac{3}{33} \), so the expression becomes \( \frac{3}{33}-\frac{1}{33} = \frac{2}{33} \). It's also handy to recognize patterns in denominators! When working with similar fractions, like \( \frac{7}{11}-\frac{7}{12} \), the common denominator will often be the product of the two denominators. For instance, \( 11 \times 12 = 132 \) would be great to use, allowing you to rewrite both fractions before subtracting. This way, you’ll avoid mistakes and make the math smoother. Give these techniques a try, and who knows? You might just find a secret talent for fraction gymnastics!
