Pregunta
Question 11 (1 point) A committee is to have four members ( 2 women and 2 men). There are 4 men and 7 women available to serve on the committee. How many different committees can be formed?
Ask by Turner Stuart. in the United States
Feb 17,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
126 different committees can be formed.
Solución
To form the committee, we choose 2 men from 4 available and 2 women from 7 available.
Number of ways to choose 2 men = 4C2 = 6
Number of ways to choose 2 women = 7C2 = 21
Multiplying these values gives the total number of committees:
Total committees = 6 × 21 = 126
So, 126 different committees can be formed.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To form a committee of 2 women from 7 and 2 men from 4, we can use the combination formula, which is \( C(n, r) = \frac{n!}{r!(n-r)!} \). Calculating for women: \( C(7, 2) = \frac{7!}{2!(7-2)!} = \frac{7 \times 6}{2 \times 1} = 21 \) Calculating for men: \( C(4, 2) = \frac{4!}{2!(4-2)!} = \frac{4 \times 3}{2 \times 1} = 6 \) Now, multiply the combinations for men and women: Total committees = \( 21 \times 6 = 126 \) So, 126 different committees can be formed!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium