Pregunta
upstudy study bank question image url

Question If \( \vec{F}(t)=\underline{i}+2 e^{2 t} \underline{j}+t^{3} \underline{k} \) and \( \vec{G}(t)=3 t^{2} \underline{i}+5 e^{-t} \underline{j}-t 3 \underline{k} \) are the vector functions then evaluate OR a) \( \frac{d}{d t}(\vec{F} \times \vec{G})(t) \) b) \( \frac{d \vec{F}}{d t} \times \vec{G} \) c) \( \vec{F} \times \frac{d \vec{G}}{d t} \) and verify d) \( \frac{d}{d t}(\vec{F} \times \vec{G})(t)=\frac{d \vec{F}}{d t} \times \vec{G}+\vec{F} \times \frac{d \vec{G}}{d t} \) (a) If \( A(-2,5), B(1,5) \) are end points of chord \( A B \) of circle \( x^{2}+y^{2}+x-5 y-2=0 \), then show that line drawn from the center of circle is perpendicular to chord \( A B \), and bisects chord \( A B \). (b) Coordinates of end points of two chords are \( P(0,2), Q(-2,0) \) and \( R(0,-2), S(2,0) \). Show that the two chords \( P Q \) and \( R S \) are equidistant from the center of circle \( x^{2}+y^{2}=4 \). Solve the differential equation \[ y^{2} d x+\left(x y+x^{2}\right) d y=0 \]

Ask by Savage Burgess. in Pakistan
Jan 10,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the differential equation \( y^{2} d x+\left(x y+x^{2}\right) d y=0 \) is: \[ \frac{y^{3}}{3} + \frac{x^{2}y}{2} + \frac{x^{3}}{3} = C \] where \( C \) is a constant.

Solución

To solve the given differential equation \( y^{2} d x+\left(x y+x^{2}\right) d y=0 \), we can use the method of separation of variables. First, let's rearrange the equation to separate the variables: \[ y^{2} d x = -(x y+x^{2}) d y \] Next, we can integrate both sides of the equation: \[ \int y^{2} d x = -\int (x y+x^{2}) d y \] Now, we can solve the integrals: \[ \frac{y^{3}}{3} = -\frac{x^{2}y}{2} - \frac{x^{3}}{3} + C \] where \( C \) is the constant of integration. Therefore, the solution to the differential equation is: \[ \frac{y^{3}}{3} + \frac{x^{2}y}{2} + \frac{x^{3}}{3} = C \] This is the general solution to the differential equation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To tackle this vector calculus problem, it’s helpful to remember a fundamental rule from vector theory: the derivative of a cross product follows the product rule! This means that the derivative of the cross product of two vectors in time is the derivative of the first vector crossed with the second plus the first vector crossed with the derivative of the second. So for \( \frac{d}{d t}(\vec{F} \times \vec{G}) \), use this rule! Now, as for verifying that the line from the center of the circle is perpendicular to chord \( AB \), we can start by finding the center and radius from the given equation. Once we obtain the center, we can calculate the slope of the chord \( AB \) formed by the endpoints \( A(-2,5) \) and \( B(1,5) \), and the slope of the radius from the center to the midpoint of chord \( AB \). If these slopes multiply to -1, then you've confirmed that it’s indeed perpendicular!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad