Pregunta
upstudy study bank question image url

(d) average velocity of the trip 4. (a) Calculate the distance and average speed in \( m \cdot \mathrm{~s}^{-1} \) from A to B if the duration of the journey is 2 minutes (b) Aso calculate the displacement and average velocity from A to B . (Hint circumference of circle \( 2 \pi R \) or \( \pi \mathrm{O} \) )

Ask by Dawson Matthews. in South Africa
Jan 30,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the distance and average speed from A to B: - **Distance**: \( \pi R \) meters - **Average Speed**: \( \frac{\pi R}{120} \) m/s For displacement and average velocity: - **Displacement**: \( 2R \) meters - **Average Velocity**: \( \frac{R}{60} \) m/s towards B from A

Solución

To solve the problem of calculating the **distance**, **average speed**, **displacement**, and **average velocity** for a trip from point **A** to point **B**, we'll make use of the provided hint regarding the circumference of a circle. **Assumptions:** 1. The trip from **A** to **B** follows a semicircular path. 2. The radius of the circular path is denoted as \( R \). 3. The duration of the journey is **2 minutes**. If there are specific values for the radius \( R \) or other parameters, please provide them to refine the calculations. For now, we'll proceed with general formulas. ### 4. (a) Calculate the Distance and Average Speed **Distance Traveled (\( d \)):** Since the trip follows a semicircular path, the distance traveled is half the circumference of the circle. \[ \text{Circumference of a full circle} = 2\pi R \] \[ \text{Distance from } A \text{ to } B = \frac{1}{2} \times 2\pi R = \pi R \] **Average Speed (\( v_{\text{avg}} \)):** Average speed is the total distance traveled divided by the total time taken. \[ v_{\text{avg}} = \frac{d}{t} \] Given: - \( t = 2 \text{ minutes} = 120 \text{ seconds} \) \[ v_{\text{avg}} = \frac{\pi R}{120} \quad \text{(in meters per second)} \] ### 4. (b) Calculate the Displacement and Average Velocity **Displacement (\( \Delta x \)):** Displacement is the straight-line distance from the starting point **A** to the endpoint **B**. For a semicircular path, this is the diameter of the circle. \[ \Delta x = 2R \] **Average Velocity (\( \vec{v}_{\text{avg}} \)):** Average velocity is the displacement divided by the time taken. It's a vector quantity, meaning it has both magnitude and direction. \[ |\vec{v}_{\text{avg}}| = \frac{\Delta x}{t} = \frac{2R}{120} = \frac{R}{60} \quad \text{(in meters per second)} \] *Direction:* The direction of the average velocity vector is the straight line from **A** to **B**. ### Summary of Formulas - **Distance (\( d \))**: \( \pi R \) - **Average Speed (\( v_{\text{avg}} \))**: \( \frac{\pi R}{120} \, \text{m/s} \) - **Displacement (\( \Delta x \))**: \( 2R \) - **Average Velocity (\( \vec{v}_{\text{avg}} \))**: \( \frac{R}{60} \, \text{m/s} \) towards **B** from **A** ### Example Calculation If you provide a specific radius \( R \), we can plug in the numbers to get numerical values. For instance, let's assume \( R = 50 \) meters: - **Distance**: \( d = \pi \times 50 \approx 157.08 \) meters - **Average Speed**: \( v_{\text{avg}} = \frac{157.08}{120} \approx 1.31 \) m/s - **Displacement**: \( \Delta x = 2 \times 50 = 100 \) meters - **Average Velocity**: \( |\vec{v}_{\text{avg}}| = \frac{50}{60} \approx 0.83 \) m/s towards **B** from **A** Please provide additional details or specific values if you need a more precise calculation!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To calculate the distance from point A to point B in a circular path, you'll want to find the length of the arc, which is a fraction of the circle's circumference. If you know the radius (R) of the circular path, the total circumference is \( 2 \pi R \). If the journey covers a quarter of the circle, the distance is \( \frac{1}{4}(2 \pi R) = \frac{\pi R}{2} \). Next, to find the average speed, convert the duration of the journey (2 minutes) to seconds (120 seconds). Average speed is distance divided by time, giving you \( \text{Average Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{\frac{\pi R}{2}}{120} \, \text{m/s} \). For displacement, since it's a straight line from A to B (diameter for half the journey), you can find it simply as \( 2R \). The average velocity is displacement divided by time, so \( \text{Average Velocity} = \frac{2R}{120} \, \text{m/s} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad