\( [ ( \tan x + \cos x ) ( \sin x + \cot x ) ] ^ { \prime } \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To differentiate the expression \( [ ( \tan x + \cos x ) ( \sin x + \cot x ) ] ^ { \prime } \), we can apply the product rule. Let \( u = \tan x + \cos x \) and \( v = \sin x + \cot x \). Using the product rule, we have: \[ \frac{d}{dx}[uv] = u'v + uv' \] Now, we need to find \( u' \) and \( v' \): 1. **Finding \( u' \)**: \[ u' = \frac{d}{dx}(\tan x) + \frac{d}{dx}(\cos x) = \sec^2 x - \sin x \] 2. **Finding \( v' \)**: \[ v' = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\cot x) = \cos x - \csc^2 x \] Now substitute \( u \), \( v \), \( u' \), and \( v' \) back into the product rule formula: \[ \frac{d}{dx}[ ( \tan x + \cos x ) ( \sin x + \cot x ) ] = (\sec^2 x - \sin x)(\sin x + \cot x) + (\tan x + \cos x)(\cos x - \csc^2 x) \] This expression can be simplified further to obtain the final result.
