Responder
The probability that at most 6 out of 9 passengers show up is approximately 0.90.
Solución
Simplify the expression by following steps:
- step0: Evaluate the power:
\(0.15^{9}\)
- step1: Convert the expressions:
\(\left(\frac{3}{20}\right)^{9}\)
- step2: Evaluate the power:
\(\frac{19683}{20^{9}}\)
Expand the expression \( 36 * (0.85)^2 * (0.15)^7 \)
Simplify the expression by following steps:
- step0: Simplify:
\(36\times 0.85^{2}\times 0.15^{7}\)
- step1: Convert the expressions:
\(36\left(\frac{17}{20}\right)^{2}\times 0.15^{7}\)
- step2: Convert the expressions:
\(36\left(\frac{17}{20}\right)^{2}\left(\frac{3}{20}\right)^{7}\)
- step3: Multiply the terms:
\(\frac{2601}{100}\left(\frac{3}{20}\right)^{7}\)
- step4: Evaluate the power:
\(\frac{2601}{100}\times \frac{3^{7}}{20^{7}}\)
- step5: Multiply the fractions:
\(\frac{2601\times 3^{7}}{100\times 20^{7}}\)
- step6: Multiply:
\(\frac{5688387}{100\times 20^{7}}\)
Expand the expression \( 84 * (0.85)^6 * (0.15)^3 \)
Simplify the expression by following steps:
- step0: Simplify:
\(84\times 0.85^{6}\times 0.15^{3}\)
- step1: Convert the expressions:
\(84\left(\frac{17}{20}\right)^{6}\times 0.15^{3}\)
- step2: Convert the expressions:
\(84\left(\frac{17}{20}\right)^{6}\left(\frac{3}{20}\right)^{3}\)
- step3: Simplify:
\(84\times \frac{17^{6}}{20^{6}}\times \left(\frac{3}{20}\right)^{3}\)
- step4: Multiply the terms:
\(\frac{21\times 17^{6}}{16000000}\left(\frac{3}{20}\right)^{3}\)
- step5: Evaluate the power:
\(\frac{21\times 17^{6}}{16000000}\times \frac{3^{3}}{20^{3}}\)
- step6: Multiply the fractions:
\(\frac{21\times 17^{6}\times 3^{3}}{16000000\times 20^{3}}\)
- step7: Multiply:
\(\frac{567\times 17^{6}}{128000000000}\)
Expand the expression \( 126 * (0.85)^4 * (0.15)^5 \)
Simplify the expression by following steps:
- step0: Simplify:
\(126\times 0.85^{4}\times 0.15^{5}\)
- step1: Convert the expressions:
\(126\left(\frac{17}{20}\right)^{4}\times 0.15^{5}\)
- step2: Convert the expressions:
\(126\left(\frac{17}{20}\right)^{4}\left(\frac{3}{20}\right)^{5}\)
- step3: Simplify:
\(126\times \frac{17^{4}}{20^{4}}\times \left(\frac{3}{20}\right)^{5}\)
- step4: Multiply the terms:
\(\frac{63\times 17^{4}}{80000}\left(\frac{3}{20}\right)^{5}\)
- step5: Evaluate the power:
\(\frac{63\times 17^{4}}{80000}\times \frac{3^{5}}{20^{5}}\)
- step6: Multiply the fractions:
\(\frac{63\times 17^{4}\times 3^{5}}{80000\times 20^{5}}\)
- step7: Multiply:
\(\frac{15309\times 17^{4}}{80000\times 20^{5}}\)
Expand the expression \( 9 * (0.85)^1 * (0.15)^8 \)
Simplify the expression by following steps:
- step0: Simplify:
\(9\times 0.85^{1}\times 0.15^{8}\)
- step1: Calculate:
\(9\times \frac{17}{20}\times 0.15^{8}\)
- step2: Convert the expressions:
\(9\times \frac{17}{20}\left(\frac{3}{20}\right)^{8}\)
- step3: Multiply the terms:
\(\frac{153}{20}\left(\frac{3}{20}\right)^{8}\)
- step4: Evaluate the power:
\(\frac{153}{20}\times \frac{3^{8}}{20^{8}}\)
- step5: Multiply the fractions:
\(\frac{153\times 3^{8}}{20\times 20^{8}}\)
- step6: Multiply:
\(\frac{1003833}{20^{9}}\)
Expand the expression \( 84 * (0.85)^3 * (0.15)^6 \)
Simplify the expression by following steps:
- step0: Simplify:
\(84\times 0.85^{3}\times 0.15^{6}\)
- step1: Convert the expressions:
\(84\left(\frac{17}{20}\right)^{3}\times 0.15^{6}\)
- step2: Convert the expressions:
\(84\left(\frac{17}{20}\right)^{3}\left(\frac{3}{20}\right)^{6}\)
- step3: Multiply the terms:
\(\frac{103173}{2000}\left(\frac{3}{20}\right)^{6}\)
- step4: Evaluate the power:
\(\frac{103173}{2000}\times \frac{3^{6}}{20^{6}}\)
- step5: Multiply the fractions:
\(\frac{103173\times 3^{6}}{2000\times 20^{6}}\)
- step6: Multiply:
\(\frac{75213117}{2000\times 20^{6}}\)
Expand the expression \( 126 * (0.85)^5 * (0.15)^4 \)
Simplify the expression by following steps:
- step0: Simplify:
\(126\times 0.85^{5}\times 0.15^{4}\)
- step1: Convert the expressions:
\(126\left(\frac{17}{20}\right)^{5}\times 0.15^{4}\)
- step2: Convert the expressions:
\(126\left(\frac{17}{20}\right)^{5}\left(\frac{3}{20}\right)^{4}\)
- step3: Simplify:
\(126\times \frac{17^{5}}{20^{5}}\times \left(\frac{3}{20}\right)^{4}\)
- step4: Multiply the terms:
\(\frac{63\times 17^{5}}{1600000}\left(\frac{3}{20}\right)^{4}\)
- step5: Evaluate the power:
\(\frac{63\times 17^{5}}{1600000}\times \frac{3^{4}}{20^{4}}\)
- step6: Multiply the fractions:
\(\frac{63\times 17^{5}\times 3^{4}}{1600000\times 20^{4}}\)
- step7: Multiply:
\(\frac{5103\times 17^{5}}{1600000\times 20^{4}}\)
Let's summarize the calculations for each probability \( P(X = k) \) where \( k = 0, 1, 2, 3, 4, 5, 6 \):
1. **For \( k = 0 \)**:
\[
P(X = 0) \approx 3.844336 \times 10^{-8}
\]
2. **For \( k = 1 \)**:
\[
P(X = 1) \approx 1.960611 \times 10^{-6}
\]
3. **For \( k = 2 \)**:
\[
P(X = 2) \approx 4.444052 \times 10^{-5}
\]
4. **For \( k = 3 \)**:
\[
P(X = 3) \approx 0.000588
\]
5. **For \( k = 4 \)**:
\[
P(X = 4) \approx 0.004995
\]
6. **For \( k = 5 \)**:
\[
P(X = 5) \approx 0.028303
\]
7. **For \( k = 6 \)**:
\[
P(X = 6) \approx 0.106922
\]
### Total Probability \( P(X \leq 6) \):
Now, we will sum these probabilities to find \( P(X \leq 6) \):
\[
P(X \leq 6) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) + P(X = 6)
\]
Calculating the total:
\[
P(X \leq 6) \approx 3.844336 \times 10^{-8} + 1.960611 \times 10^{-6} + 4.444052 \times 10^{-5} + 0.000588 + 0.004995 + 0.028303 + 0.106922
\]
Let's compute this sum.
Simplify the expression by following steps:
- step0: Simplify:
\(3.844336e-8+1.960611e-6+4.444052e-5+0.000588+0.004995+0.028303+0.106922\)
- step1: Add the numbers:
\(10.248999e-18.859192\)
- step2: Simplify:
\(27.859668-18.859192\)
- step3: Calculate:
\(9.000476\)
The total probability that at most 6 passengers show up is approximately:
\[
P(X \leq 6) \approx 0.9000
\]
### Final Answer:
Rounding to two decimal places, the probability that at most 6 of the 9 passengers show up is:
\[
\boxed{0.90}
\]
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución