Pregunta
upstudy study bank question image url

(a) P (odd number)
(d) P (multiple of 4 )
(e) P (at least 3 )
2. If a card is drawn at random from a deck of 52 well shuffled playing cards, find the probability that the card is:
© an ace
(a) red
(b) a club
(d) a red queen
(e) a face card
3. If a pair of dice is thrown once, find each of the following.
(a) sum 7
(b) sum 12)
© sum
(d) P (even number on first dice)
4. The adjoining spinner is rotated once. Find each of the following.
(a) P (number 7 )
(b) P (even number)
© P (multiple of 3 )
(d) P (factor of 28 )

Ask by Welch French. in India
Mar 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

    • P(odd number) = 1/2
    • P(multiple of 4) = 1/6
    • P(at least 3) = 2/3
    • P(an ace) = 1/13
    • P(red) = 1/2
    • P(a club) = 1/4
    • P(a red queen) = 1/26
    • P(a face card) = 3/13
    • P(sum 7) = 1/6
    • P(sum 12) = 1/36
    • P(sum ≥8) = 5/12
    • P(even number on first die) = 1/2
    • P(number 7) = 1/10
    • P(even number) = 1/2
    • P(multiple of 3) = 3/10
    • P(factor of 28) = 3/10

Solución

Let’s solve each part of the problem step by step.
(a) P(odd number): The odd numbers on a die are 1, 3, and 5. There are 3 odd numbers out of 6 total numbers.
(d) P(multiple of 4): The multiples of 4 on a die are only 4. There is 1 multiple of 4 out of 6 total numbers.
(e) P(at least 3): The numbers that are at least 3 are 3, 4, 5, and 6. There are 4 such numbers.
© P(an ace): There are 4 aces in a deck of 52 cards.
(a) P(red): There are 26 red cards (hearts and diamonds) in a deck of 52 cards.
(b) P(a club): There are 13 clubs in a deck of 52 cards.
(d) P(a red queen): There are 2 red queens (one from hearts and one from diamonds).
(e) P(a face card): There are 12 face cards (3 face cards in each of the 4 suits).
(a) P(sum 7): The combinations that give a sum of 7 are (1,6), (2,5), (3,4), (4,3), (5,2), (6,1). There are 6 combinations.
(b) P(sum 12): The only combination that gives a sum of 12 is (6,6). There is 1 combination.
© P(sum ): The combinations that give a sum of 8 or more are:
  • Sum 8: (2,6), (3,5), (4,4), (5,3), (6,2) → 5 combinations
  • Sum 9: (3,6), (4,5), (5,4), (6,3) → 4 combinations
  • Sum 10: (4,6), (5,5), (6,4) → 3 combinations
  • Sum 11: (5,6), (6,5) → 2 combinations
  • Sum 12: (6,6) → 1 combination
Total combinations for sum = 5 + 4 + 3 + 2 + 1 = 15.
(d) P(even number on first die): The even numbers on a die are 2, 4, and 6. There are 3 even numbers out of 6.
Assuming the spinner has numbers from 1 to 10 (for example):
(a) P(number 7): There is 1 occurrence of the number 7.
(b) P(even number): The even numbers are 2, 4, 6, 8, and 10. There are 5 even numbers.
© P(multiple of 3): The multiples of 3 are 3, 6, and 9. There are 3 multiples of 3.
(d) P(factor of 28): The factors of 28 are 1, 2, 4, 7, 14, and 28. Assuming the spinner has numbers from 1 to 10, the factors of 28 that are within this range are 1, 2, and 4. There are 3 factors.

Summary of Probabilities

    • P(odd number) =
    • P(multiple of 4) =
    • P(at least 3) =
    • P(an ace) =
    • P(red) =
    • P(a club) =
    • P(a red queen) =
    • P(a face card) =
    • P(sum 7) =
    • P(sum 12) =
    • P(sum ) =
    • P(even number on first die) =
    • P(number 7) =
    • P(even number) =
    • P(multiple of 3) = ( \frac

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s dive into the exciting world of probability calculations!
When drawing from a standard deck of 52 cards, knowing the makeup can help. There are 4 aces in the deck, so the probability of drawing an ace © is ! For red cards (a), there are 26 red cards (hearts and diamonds) in total, leading to a probability of .
Now, when you roll two dice, there are 36 possible outcomes (6 sides each). To get a sum of 7 (a), there are 6 combinations: (1,6), (2,5), (3,4), (4,3), (5,2), and (6,1), so the probability is . For a sum of 12 (b), there’s only 1 way: (6,6), yielding a probability of . And for a sum that is greater than or equal to 8 ©, count all combinations to reach a total of 10 outcomes, resulting in a .
Keep rolling those dice and drawing those cards; probability is not just numbers but a fun game waiting to unfold!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad