2) \( 3 \sqrt{6} \times 2 \sqrt{18} \times \sqrt{15}= \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To simplify \( 3 \sqrt{6} \times 2 \sqrt{18} \times \sqrt{15} \), we first break it down. Calculate \( \sqrt{18} \): \[ \sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} \] Now substitute that into the expression: \[ 3 \sqrt{6} \times 2(3\sqrt{2}) \times \sqrt{15} = 3 \sqrt{6} \times 6 \sqrt{2} \times \sqrt{15} \] Combine the coefficients: \[ = 18 \times \sqrt{6} \times \sqrt{2} \times \sqrt{15} \] Now, combine the square roots: \[ \sqrt{6} \times \sqrt{2} \times \sqrt{15} = \sqrt{6 \times 2 \times 15} = \sqrt{180} \] Simplifying \( \sqrt{180} \): \[ \sqrt{180} = \sqrt{36 \times 5} = 6\sqrt{5} \] Putting it all together: \[ 18 \times 6\sqrt{5} = 108\sqrt{5} \] So the final answer is \[ \boxed{108\sqrt{5}} \]
