Pregunta
upstudy study bank question image url

Quetilon 30 of 30 (1 point) I Question Attompt i of 3 A certain person had a brain that weighed 1.35 kg and contained \( 3.82 \times 10^{70} \) cells. Part 1 of 2 Assuming that each cell was completely filled with water (density \( =1.00 \frac{g}{\mathrm{~mL}} \), , calculate the length of one side of such a cell if it were a cube. Round your answer to 3 significant digits. \[ 3.27 \times 10^{-3} \mathrm{~cm} \] Part: \( 1 / 2 \) Part 2 of 2 If the cells were spread out into a thin layer that was a single cell thick, what would be the total surface area (in square meters) for the tap side of the cell layer? Round your answer to 3 significant digits. \( \square \) Try again

Ask by Mills Gough. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The total surface area for the top side of the cell layer is \( 4.09 \times 10^{61} \) square meters.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the length of one side of a cell if it were a cube, first convert the weight of the brain into grams: \( 1.35 \, \text{kg} = 1350 \, \text{g} \). Since each cell is filled with water, the total volume of cells is equal to the mass divided by the density: \[ \text{Volume} = \frac{1350 \, \text{g}}{1.00 \, \text{g/mL}} = 1350 \, \text{mL} = 1350 \, \text{cm}^3 \] Knowing there are \( 3.82 \times 10^{70} \) cells, the volume of one cell is: \[ \text{Volume of one cell} = \frac{1350 \, \text{cm}^3}{3.82 \times 10^{70}} \approx 3.54 \times 10^{-68} \, \text{cm}^3 \] If the cell is cubic, its side length \( L \) can be found using \[ L = \sqrt[3]{\text{Volume}} \approx \sqrt[3]{3.54 \times 10^{-68}} \approx 3.27 \times 10^{-3} \, \text{cm} \] Now, for the total surface area of a thin layer of these cells spread out. Each cell has 6 faces, so the surface area of one cell is \[ \text{Surface area of one cell} = 6L^2 \] Calculating the surface area for one cell using \( L \approx 3.27 \times 10^{-3} \, \text{cm} \): \[ \text{Surface area of one cell} = 6(3.27 \times 10^{-3})^2 \approx 6(1.07 \times 10^{-5}) \approx 6.42 \times 10^{-5} \, \text{cm}^2 \] Thus, the total surface area for all \( 3.82 \times 10^{70} \) cells is: \[ \text{Total surface area} = 3.82 \times 10^{70} \times 6.42 \times 10^{-5} \approx 2.45 \times 10^{66} \, \text{cm}^2 \] Converting this to square meters, where \( 1 \, \text{m}^2 = 10^{4} \, \text{cm}^2 \): \[ \text{Total surface area} \approx \frac{2.45 \times 10^{66}}{10^{4}} \approx 2.45 \times 10^{62} \, \text{m}^2 \] Feel free to round it to three significant digits to get \( 2.45 \times 10^{62} \, \text{m}^2 \) as your answer!

Latest Biology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad