Pregunta
Consider the following fractions. \[ \frac{4}{9}, \frac{11}{18} \] Step 1 of 2 : Which fraction is larger?
Ask by Harper Savage. in the United States
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(\frac{11}{18}\) is larger than \(\frac{4}{9}\).
Solución
**Step 1 of 2: Determine Which Fraction is Larger**
To compare the fractions \(\frac{4}{9}\) and \(\frac{11}{18}\), we'll find a common denominator.
1. **Find the Least Common Denominator (LCD):**
- The denominators are 9 and 18.
- The LCD of 9 and 18 is 18.
2. **Convert Both Fractions to Have the LCD as the Denominator:**
- \(\frac{4}{9} = \frac{4 \times 2}{9 \times 2} = \frac{8}{18}\)
- \(\frac{11}{18}\) already has the denominator 18.
3. **Compare the Numerators:**
- \(\frac{8}{18}\) vs. \(\frac{11}{18}\)
- Since 11 is greater than 8, \(\frac{11}{18}\) is larger than \(\frac{8}{18}\).
**Conclusion:** \(\frac{11}{18}\) is the larger fraction.
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
The Deep Dive
To compare the fractions \(\frac{4}{9}\) and \(\frac{11}{18}\), we first want to have a common denominator. The least common multiple (LCM) of 9 and 18 is 18. Now, we express \(\frac{4}{9}\) with a denominator of 18: \[ \frac{4}{9} = \frac{4 \times 2}{9 \times 2} = \frac{8}{18}. \] Now we compare \(\frac{8}{18}\) and \(\frac{11}{18}\). Since \(11 > 8\), we can conclude that: \[ \frac{11}{18} \text{ is the larger fraction.} \]
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium