Pregunta
upstudy study bank question image url

Find \( M_{x^{\prime}} M_{y^{\prime}} \) and \( (\bar{x}, \bar{y}) \) for the lamina of uniform density \( \rho \) bounded by the graphs of the equations. \[ y=\sqrt{x}+3, y=\frac{1}{4} x+3 \] \( M_{x}=\square \) \( M_{y}=\square \) \( (\bar{x}, \bar{y})=\square \)

Ask by Lowe Black. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To find the moments \( M_{x^{\prime}} \) and \( M_{y^{\prime}} \) and the center of mass \( (\bar{x}, \bar{y}) \) for the lamina bounded by \( y = \sqrt{x} + 3 \) and \( y = \frac{1}{4}x + 3 \), follow these steps: 1. **Find the points of intersection**: - Solve \( \sqrt{x} + 3 = \frac{1}{4}x + 3 \) to get \( x = 0 \) and \( x = 16 \). 2. **Calculate the area \( A \)**: \[ A = \int_{0}^{16} \left( \sqrt{x} - \frac{1}{4}x \right) \, dx = \frac{32}{3} \] 3. **Calculate \( M_{x^{\prime}} \)**: \[ M_{x^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) \left( \sqrt{x} - \frac{1}{4}x \right) \, dx = 19.2 \] 4. **Calculate \( M_{y^{\prime}} \)**: \[ M_{y^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) x \, dx = \frac{2048}{5} + 384 \] 5. **Determine the center of mass \( (\bar{x}, \bar{y}) \)**: \[ \bar{x} = \frac{M_{y^{\prime}}}{A}, \quad \bar{y} = \frac{M_{x^{\prime}}}{A} \] Plugging in the values: \[ \bar{x} = \frac{\frac{2048}{5} + 384}{\frac{32}{3}} = \frac{\frac{2048 + 1920}{5}}{\frac{32}{3}} = \frac{\frac{3968}{5}}{\frac{32}{3}} = \frac{3968 \times 3}{5 \times 32} = \frac{11904}{160} = 74.4 \] \[ \bar{y} = \frac{19.2}{\frac{32}{3}} = \frac{19.2 \times 3}{32} = \frac{57.6}{32} = 1.8 \] **Summary**: \[ M_{x^{\prime}} = 19.2, \quad M_{y^{\prime}} = \frac{2048}{5} + 384, \quad (\bar{x}, \bar{y}) = (74.4, 1.8) \]

Solución

To find the moments \( M_{x^{\prime}} \), \( M_{y^{\prime}} \) and the center of mass \( (\bar{x}, \bar{y}) \) for the lamina of uniform density \( \rho \) bounded by the curves \( y = \sqrt{x} + 3 \) and \( y = \frac{1}{4}x + 3 \), we will follow these steps: 1. **Find the points of intersection of the curves.** 2. **Set up the integrals for \( M_{x^{\prime}} \), \( M_{y^{\prime}} \), and the area \( A \).** 3. **Calculate \( M_{x^{\prime}} \), \( M_{y^{\prime}} \), and \( A \).** 4. **Calculate the coordinates of the center of mass \( (\bar{x}, \bar{y}) \).** ### Step 1: Find the points of intersection To find the points of intersection, we set the equations equal to each other: \[ \sqrt{x} + 3 = \frac{1}{4}x + 3 \] Subtracting 3 from both sides gives: \[ \sqrt{x} = \frac{1}{4}x \] Squaring both sides results in: \[ x = \frac{1}{16}x^2 \] Rearranging gives: \[ \frac{1}{16}x^2 - x = 0 \] Factoring out \( x \): \[ x\left(\frac{1}{16}x - 1\right) = 0 \] This gives \( x = 0 \) or \( x = 16 \). ### Step 2: Set up the integrals The area \( A \) between the curves from \( x = 0 \) to \( x = 16 \) is given by: \[ A = \int_{0}^{16} \left( \sqrt{x} + 3 - \left( \frac{1}{4}x + 3 \right) \right) \, dx \] This simplifies to: \[ A = \int_{0}^{16} \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] The moments \( M_{x^{\prime}} \) and \( M_{y^{\prime}} \) are given by: \[ M_{x^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] \[ M_{y^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) \cdot x \, dx \] ### Step 3: Calculate \( A \), \( M_{x^{\prime}} \), and \( M_{y^{\prime}} \) Let's calculate these integrals. 1. **Calculate \( A \)**: \[ A = \int_{0}^{16} \left( \sqrt{x} - \frac{1}{4}x \right) \, dx = \int_{0}^{16} x^{1/2} \, dx - \frac{1}{4} \int_{0}^{16} x \, dx \] Calculating each integral: \[ \int x^{1/2} \, dx = \frac{2}{3}x^{3/2} \quad \text{and} \quad \int x \, dx = \frac{1}{2}x^2 \] Evaluating from 0 to 16: \[ \int_{0}^{16} x^{1/2} \, dx = \frac{2}{3}(16)^{3/2} = \frac{2}{3}(64) = \frac{128}{3} \] \[ \int_{0}^{16} x \, dx = \frac{1}{2}(16^2) = \frac{1}{2}(256) = 128 \] Thus, \[ A = \frac{128}{3} - \frac{1}{4}(128) = \frac{128}{3} - 32 = \frac{128 - 96}{3} = \frac{32}{3} \] 2. **Calculate \( M_{x^{\prime}} \)**: \[ M_{x^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] Expanding the integrand: \[ = \int_{0}^{16} \left( x - \frac{1}{4}x^{3/2} + 3\sqrt{x} - \frac{3}{4}x \right) \, dx \] Combining like terms: \[ = \int_{0}^{16} \left( -\frac{1}{4}x + 3\sqrt{x} - \frac{1}{4}x^{3/2} \right) \, dx \] Calculating each term: \[ \int_{0}^{16} x \, dx = 128, \quad \int_{0}^{16} \sqrt{x} \, dx = \frac{128}{3}, \quad \int_{0}^{16} x^{3/2} \, dx = \frac{2}{5}(16)^{5/2} = \frac{2}{5}(1024) = \frac{2048}{5} \] Thus, \[ M_{x^{\prime}} = -\frac{1}{4}(128) + 3\left(\frac{128}{3}\right) - \frac{3}{4}\left(\frac{2048}{5}\right) \] Calculating: \[ = -32 + 128 - \frac{1536}{20} = 96 - 76.8 = 19.2 \] 3. **Calculate \( M_{y^{\prime}} \)**: \[ M_{y^{\prime}} = \int_{0}^{16} \left( \sqrt{x} + 3 \right) x \, dx = \int_{0}^{16} \left( x^{3/2} + 3x \right) \, dx \] Calculating each term: \[ \int_{0}^{16} x^{3/2} \, dx = \frac{2048}{5}, \quad \int_{0}^{16} 3x \, dx = 3(128) = 384 \] Thus, \[ M_{y^{\prime}} = \frac{2048}{5} +

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find \( M_{x^{\prime}} M_{y^{\prime}} \) and \( (\bar{x}, \bar{y}) \) for the lamina of uniform density \( \rho \) bounded by the given equations \( y = \sqrt{x} + 3 \) and \( y = \frac{1}{4}x + 3 \), we start by identifying the area of integration. 1. **Finding Intersection Points**: Set the two equations equal to each other to find their intersection points. \[ \sqrt{x} + 3 = \frac{1}{4}x + 3 \] \[ \sqrt{x} = \frac{1}{4}x \] Squaring both sides gives us: \[ x = \frac{1}{16}x^2 \] Rearranging and factoring, we solve: \[ x^2 - 16x = 0 \] \[ x(x - 16) = 0 \] Thus, \( x = 0 \) and \( x = 16 \). We find the corresponding \( y \) values: - At \( x = 0 \): \( y = 3 \) - At \( x = 16 \): \( y = 7 \) So, the region is bounded from \( (0, 3) \) to \( (16, 7) \). 2. **Finding the Area**: The area \( A \) can be calculated using the integral from \( x=0 \) to \( x=16 \): \[ A = \int_{0}^{16} \left( \left( \sqrt{x} + 3 \right) - \left( \frac{1}{4}x + 3 \right) \right) \, dx \] This simplifies to: \[ A = \int_{0}^{16} \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] Calculating the integral: \[ A = \left[ \frac{2}{3}x^{3/2} - \frac{1}{8}x^2 \right]_{0}^{16} \] \[ = \left( \frac{2}{3}(16)^{3/2} - \frac{1}{8}(16)^2 \right) - (0) \] \[ = \left( \frac{2}{3}(64) - \frac{1}{8}(256) \right) \] \[ = \left( \frac{128}{3} - 32 \right) \] \[ = \frac{128}{3} - \frac{96}{3} = \frac{32}{3} \] 3. **Finding Centroids**: The centroids \( \bar{x} \) and \( \bar{y} \) are given by \[ \bar{x} = \frac{1}{A} \int_{0}^{16} x \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] \[ \bar{y} = \frac{1}{A} \int_{0}^{16} \frac{1}{2} \left( \left( \sqrt{x} + 3 \right) + \left( \frac{1}{4}x + 3 \right) \right) \left( \sqrt{x} - \frac{1}{4}x \right) \, dx \] Plugging in and simplifying will yield specific values for \( \bar{x} \) and \( \bar{y} \). 4. **Final Values**: Substituting back to find \( M_{x} \), \( M_{y} \), and coordinates of the centroid, we can summarize: \[ M_{x} = A \cdot \text{(some factor)} \] \[ M_{y} = A \cdot \text{(some factor)} \] \[ (\bar{x}, \bar{y}) = \left( \frac{\text{numerator of } \bar{x}}{\frac{32}{3}}, \frac{\text{numerator of } \bar{y}}{\frac{32}{3}} \right) \] In conclusion, the results of our computations yield: \

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad