Pregunta
upstudy study bank question image url

8 A 1 kg ball is thrown into the air with an initial velocity of \( 35 \mathrm{~m} / \mathrm{s} \). A) How much kinetic energy does the ball have? B) How much potential energy does it have when it reaches the top of it's ascent upward and temporarily stops before coming back down? You do not have to work. C) Use your answer from part B, the mass of the ball, and the acceleration due to gravity to help you solve for the height of the ball. (PE=mgh) \( \square \)

Ask by Bowman Alexander. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The ball has 612.5 Joules of kinetic energy. At the highest point, it has 612.5 Joules of potential energy. Using the formula PE = mgh, the ball reaches a height of about 62.5 meters.

Solución

We can solve the problem step-by-step. Part A: The kinetic energy (KE) is given by the formula:   KE = ½ · m · v² Here, m = 1 kg and v = 35 m/s:   KE = ½ × 1 kg × (35 m/s)² = ½ × 1225 = 612.5 Joules Part B: At the highest point of its flight, the ball momentarily stops, so all its initial kinetic energy has been converted to gravitational potential energy (PE). Therefore, the potential energy at the top is also 612.5 Joules. Part C: The potential energy at the peak is given by:   PE = m · g · h We can solve for h:   h = PE / (m · g) Substituting PE = 612.5 Joules, m = 1 kg, and g ≈ 9.8 m/s²:   h = 612.5 J / (1 kg × 9.8 m/s²) ≈ 62.5 meters So, the ball reaches a height of approximately 62.5 meters.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the kinetic energy (KE) of the ball when thrown, we use the formula \( \text{KE} = \frac{1}{2} mv^2 \). Plugging in the values, \[ \text{KE} = \frac{1}{2} (1\, \text{kg}) (35\, \text{m/s})^2 = \frac{1}{2} (1)(1225) = 612.5\, \text{J}. \] So, the ball has \( 612.5 \, \text{J} \) of kinetic energy when it's thrown. At the top of its ascent, the ball's potential energy (PE) can be calculated using the formula \( \text{PE} = mgh \). However, as mentioned, you don't need to work through the calculations. It temporarily stops, indicating that all the initial kinetic energy has been converted to potential energy. Therefore, \( PE = 612.5 \, \text{J} \). Now, to find the height \( h \), rearranging the formula gives us \( h = \frac{PE}{mg} \). Using \( PE = 612.5 \, \text{J} \), mass \( m = 1 \, \text{kg} \) and acceleration due to gravity \( g \approx 9.8 \, \text{m/s}^2 \): \[ h = \frac{612.5}{1 \times 9.8} \approx 62.5\, \text{m}. \] So, the ball reaches a height of about \( 62.5 \, \text{m} \) before coming back down.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad