Responder
Calculate the following expressions:
1. \( \cos(75) \cos(45) - \cos(15) \cos(45) \)
2. \( \cos(79) \sin(311) + \sin(101) \sin(49) \)
3. \( \sin(3x) \cos(y) + \cos(3x) \sin(y) \)
4. \( x^{2} + y^{2} \) where \( x = 2\cos(\theta) \) and \( y = 2 \)
Solutions:
1. \( \cos(75) \cos(45) - \cos(15) \cos(45) = \frac{\cos(120) - \cos(60)}{2} \)
2. \( \cos(79) \sin(311) + \sin(101) \sin(49) = -0.446954 \)
3. \( \sin(3x) \cos(y) + \cos(3x) \sin(y) = \sin(3x + y) \)
4. \( x^{2} + y^{2} = (2\cos(\theta))^{2} + 2^{2} = 4\cos^{2}(\theta) + 4 \)
Solución
Calculate or simplify the expression \( \cos(75)\cos(45)-\cos(15)\cos(45) \).
Calculate the value by following steps:
- step0: Calculate:
\(\cos\left(75\right)\cos\left(45\right)-\cos\left(15\right)\cos\left(45\right)\)
- step1: Transform the expression:
\(\frac{\cos\left(120\right)+\cos\left(30\right)}{2}-\cos\left(15\right)\cos\left(45\right)\)
- step2: Transform the expression:
\(\frac{\cos\left(120\right)+\cos\left(30\right)}{2}-\frac{\cos\left(60\right)+\cos\left(30\right)}{2}\)
- step3: Transform the expression:
\(\frac{\cos\left(120\right)+\cos\left(30\right)-\left(\cos\left(60\right)+\cos\left(30\right)\right)}{2}\)
- step4: Calculate:
\(\frac{\cos\left(120\right)-\cos\left(60\right)}{2}\)
Calculate or simplify the expression \( \\cos(79)\\sin(311)+\\sin(101)\\sin(49) \).
Calculate the value by following steps:
- step0: Calculate:
\(\cos\left(79\right)\sin\left(311\right)+\sin\left(101\right)\sin\left(49\right)\)
- step1: Calculate the trigonometric value:
\(-0.446954\)
Calculate or simplify the expression \( \\sin(3x)\\cos(y)+\\cos(3x)\\sin(y) \).
Simplify the expression by following steps:
- step0: Solution:
\(\sin\left(3x\right)\cos\left(y\right)+\cos\left(3x\right)\sin\left(y\right)\)
- step1: Transform the expression:
\(\sin\left(3x+y\right)\)
Calculate or simplify the expression \( x^{2}+y^{2} \) when \( x=2\cos(\theta) \) and \( y=2 \).
Simplify the expression by following steps:
- step0: Solution:
\(x^{2}+y^{2}\)
The value of \( \cos(75) \cos(45) - \cos(15) \cos(45) \) is \( \frac{\cos(120) - \cos(60)}{2} \).
The value of \( \cos(79) \sin(311) + \sin(101) \sin(49) \) is -0.446954.
The value of \( \sin(3x) \cos(y) + \cos(3x) \sin(y) \) is \( \sin(3x+y) \).
The value of \( x^{2} + y^{2} \) when \( x = 2\cos(\theta) \) and \( y = 2 \) is \( x^{2} + y^{2} \).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución