Pregunta
QUESTION 1 \( .1 \quad \) Factorise the following expressions fully: \( \begin{array}{l}1.1 .1 \quad x^{4}-81 \\ 112\end{array} 6 x^{2} v-10 x v+15 x-25 \)
Ask by Zimmerman Guzman. in South Africa
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( x^{4} - 81 = (x - 3)(x + 3)(x^{2} + 9) \)
\( 6x^{2}v - 10xv + 15x - 25 = (3x - 5)(2xv + 5) \)
Solución
Certainly! Let's factorise each expression step by step.
---
### **1.1. Factorise \( x^{4} - 81 \)**
**Step 1:** Recognize that \( x^{4} - 81 \) is a **difference of squares**, since \( x^4 = (x^2)^2 \) and \( 81 = 9^2 \).
\[
x^{4} - 81 = (x^{2})^{2} - 9^{2} = (x^{2} - 9)(x^{2} + 9)
\]
**Step 2:** Notice that \( x^{2} - 9 \) is also a **difference of squares**.
\[
x^{2} - 9 = (x - 3)(x + 3)
\]
**Step 3:** Combine the factors.
\[
x^{4} - 81 = (x - 3)(x + 3)(x^{2} + 9)
\]
**Final Factorised Form:**
\[
(x - 3)(x + 3)(x^{2} + 9)
\]
---
### **1.2. Factorise \( 6x^{2}v - 10xv + 15x - 25 \)**
**Step 1:** Group the terms to facilitate factoring.
\[
6x^{2}v - 10xv + 15x - 25 = (6x^{2}v - 10xv) + (15x - 25)
\]
**Step 2:** Factor out the greatest common factor (GCF) from each group.
- From the first group \( (6x^{2}v - 10xv) \), the GCF is \( 2xv \):
\[
2xv(3x - 5)
\]
- From the second group \( (15x - 25) \), the GCF is \( 5 \):
\[
5(3x - 5)
\]
**Step 3:** Now, the expression looks like:
\[
2xv(3x - 5) + 5(3x - 5)
\]
**Step 4:** Notice that \( (3x - 5) \) is a common factor.
\[
(3x - 5)(2xv + 5)
\]
**Final Factorised Form:**
\[
(3x - 5)(2xv + 5)
\]
---
**Summary of Factorisations:**
1. **\( x^4 - 81 \)**
\( = (x - 3)(x + 3)(x^2 + 9) \)
2. **\( 6x^{2}v - 10xv + 15x - 25 \)**
\( = (3x - 5)(2xv + 5) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
To factor \( x^4 - 81 \), we recognize it as a difference of squares: \( (x^2)^2 - 9^2 \). This can be factored as \( (x^2 - 9)(x^2 + 9) \). The term \( (x^2 - 9) \) can be further factored into \( (x - 3)(x + 3) \). Thus, the complete factorization is: \( (x - 3)(x + 3)(x^2 + 9) \). For \( 6x^2v - 10xv + 15x - 25 \), we can group the terms: \( (6x^2v - 10xv) + (15x - 25) \), which simplifies to \( 2xv(3x - 5) + 5(3x - 5) \). Now, we can factor out the common term \( (3x - 5) \): \( (3x - 5)(2xv + 5) \).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium