10. A hydrogen-powered car manufacturer can produce \( N \) number of cars according to the function, \[ N(x, y)=(x+2)^{2}+(y-1)^{2} \] where \( x \) and \( y \), are factory parameters. The factory operation is restricted by the following equation, \[ x^{2}+y^{2}=125 \] Use Lagrange multipliers to find the maximum and minimum values of \( N \) subject to the given constraint, if such values exist.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To apply Lagrange multipliers, we need to find the critical points of the function \( N(x, y) = (x + 2)^2 + (y - 1)^2 \) subject to the constraint \( g(x, y) = x^2 + y^2 - 125 = 0 \). First, we compute the gradients: 1. Gradient of \( N \): \[ \nabla N = \left( \frac{\partial N}{\partial x}, \frac{\partial N}{\partial y} \right) = \left( 2(x + 2), 2(y - 1) \right) \] 2. Gradient of \( g \): \[ \nabla g = \left( \frac{\partial g}{\partial x}, \frac{\partial g}{\partial y} \right) = \left( 2x, 2y \right) \] Setting up the equations for Lagrange multipliers: \[ \nabla N = \lambda \nabla g \] This gives us the system of equations: \[ 2(x + 2) = \lambda (2x) \quad (1) \] \[ 2(y - 1) = \lambda (2y) \quad (2) \] Along with the constraint: \[ x^2 + y^2 = 125 \quad (3) \] From equation (1): \[ x + 2 = \lambda x \implies x(1 - \lambda) = -2 \implies x = \frac{-2}{1 - \lambda} \quad (if \, x \neq 0) \quad (4) \] From equation (2): \[ y - 1 = \lambda y \implies y(1 - \lambda) = 1 \implies y = \frac{1}{1 - \lambda} \quad (if \, y \neq 0) \quad (5) \] Substituting (4) and (5) into the constraint (3): \[ \left( \frac{-2}{1 - \lambda} \right)^2 + \left( \frac{1}{1 - \lambda} \right)^2 = 125 \] \[ \frac{4 + 1}{(1 - \lambda)^2} = 125 \] \[ \frac{5}{(1 - \lambda)^2} = 125 \implies (1 - \lambda)^2 = \frac{5}{125} = \frac{1}{25} \] Thus, we have: \[ 1 - \lambda = \pm \frac{1}{5} \] This leads to two solutions for \( \lambda \): 1. \( 1 - \lambda = \frac{1}{5} \implies \lambda = \frac{4}{5} \) 2. \( 1 - \lambda = -\frac{1}{5} \implies \lambda = \frac{6}{5} \) Now solving for \( \lambda = \frac{4}{5} \): Substituting back into equations (4) and (5): \[ x = \frac{-2}{\frac{1}{5}} = -10, \quad y = \frac{1}{\frac{1}{5}} = 5 \] From (3): \[ (-10)^2 + 5^2 = 100 + 25 = 125 \quad (valid) \] Now solving for \( \lambda = \frac{6}{5} \): \[ x = \frac{-2}{-\frac{1}{5}} = 10, \quad y = \frac{1}{-\frac{1}{5}} = -5 \] From (3): \[ (10)^2 + (-5)^2 = 100 + 25 = 125 \quad (valid) \] Now we have two points: \( (-10, 5) \) and \( (10, -5) \). Calculating \( N \) at \( (-10, 5) \): \[ N(-10, 5) = (-10 + 2)^2 + (5 - 1)^2 = (-8)^2 + (4)^2 = 64 + 16 = 80 \] Calculating \( N \) at \( (10, -5) \): \[ N(10, -5) = (10 + 2)^2 + (-5 - 1)^2 = (12)^2 + (-6)^2 = 144 + 36 = 180 \] Thus, the maximum
