Pregunta
upstudy study bank question image url

Express the following in simplified radical form. \[ \sqrt{x y^{3}} \sqrt[3]{x^{2} y} \]

Ask by Hart Barker. in Malaysia
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified form of the expression is \( x^{\frac{7}{6}} y^{\frac{11}{6}} \).

Solución

Simplify the expression by following steps: - step0: Solution: \(\sqrt{xy^{3}}\) - step1: Rewrite the exponent: \(\sqrt{xy^{2+1}}\) - step2: Expand the expression: \(\sqrt{xy^{2}\times y}\) - step3: Reorder the terms: \(\sqrt{y^{2}xy}\) - step4: Use the properties of radicals: \(\sqrt{y^{2}}\times \sqrt{xy}\) - step5: Simplify the root: \(y\sqrt{yx}\) Let's simplify the expression step by step. We have: \[ \sqrt{x y^{3}} \sqrt[3]{x^{2} y} \] ### Step 1: Simplify each radical separately 1. **Square Root:** \[ \sqrt{x y^{3}} = \sqrt{x} \cdot \sqrt{y^{3}} = \sqrt{x} \cdot y^{3/2} = y^{3/2} \sqrt{x} \] 2. **Cube Root:** \[ \sqrt[3]{x^{2} y} = \sqrt[3]{x^{2}} \cdot \sqrt[3]{y} = x^{2/3} \cdot y^{1/3} \] ### Step 2: Combine the results Now we can combine the two simplified forms: \[ y^{3/2} \sqrt{x} \cdot x^{2/3} \cdot y^{1/3} \] ### Step 3: Combine like terms 1. **Combine the \(y\) terms:** \[ y^{3/2} \cdot y^{1/3} = y^{3/2 + 1/3} \] To add the exponents, we need a common denominator: \[ \frac{3}{2} = \frac{9}{6}, \quad \frac{1}{3} = \frac{2}{6} \quad \Rightarrow \quad y^{\frac{9}{6} + \frac{2}{6}} = y^{\frac{11}{6}} \] 2. **Combine the \(x\) terms:** \[ \sqrt{x} \cdot x^{2/3} = x^{1/2} \cdot x^{2/3} = x^{\frac{1}{2} + \frac{2}{3}} \] Again, we need a common denominator: \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{2}{3} = \frac{4}{6} \quad \Rightarrow \quad x^{\frac{3}{6} + \frac{4}{6}} = x^{\frac{7}{6}} \] ### Final Result Combining everything, we have: \[ \sqrt{x y^{3}} \sqrt[3]{x^{2} y} = x^{\frac{7}{6}} y^{\frac{11}{6}} \] Thus, the expression in simplified radical form is: \[ \boxed{x^{\frac{7}{6}} y^{\frac{11}{6}}} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the expression \(\sqrt{x y^{3}} \sqrt[3]{x^{2} y}\), we can start by breaking down each radical term into simpler components. 1. Rewrite the square root and cube root using exponent notation: \[ \sqrt{xy^3} = (xy^3)^{1/2} = x^{1/2} y^{3/2} \] \[ \sqrt[3]{x^2 y} = (x^2 y)^{1/3} = x^{2/3} y^{1/3} \] 2. Now, we can multiply the two expressions: \[ \sqrt{xy^3} \cdot \sqrt[3]{x^2 y} = (x^{1/2} y^{3/2})(x^{2/3} y^{1/3}) \] 3. Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\), we combine the like bases: \[ x^{1/2 + 2/3} y^{3/2 + 1/3} \] 4. To add the exponents, we need a common denominator. The least common multiple of 2 and 3 is 6: - For \(1/2\), convert to sixths: \(1/2 = 3/6\) - For \(2/3\), convert to sixths: \(2/3 = 4/6\) - Thus, \(1/2 + 2/3 = 3/6 + 4/6 = 7/6\) - Similarly, for \(3/2\) and \(1/3\): - \(3/2 = 9/6\) - \(1/3 = 2/6\) - Thus, \(3/2 + 1/3 = 9/6 + 2/6 = 11/6\) So our expression now looks like this: \[ x^{7/6} y^{11/6} \] Now, we can express it in radical form. Recall that \(x^{a/b} = \sqrt[b]{x^a}\): \[ = \frac{\sqrt[6]{x^7} \cdot \sqrt[6]{y^{11}}}{1} \] This gives us: \[ \frac{\sqrt[6]{x^7 y^{11}}}{1} = \sqrt[6]{x^7 y^{11}} \] Thus, the simplified radical form of the given expression is: \[ \sqrt[6]{x^7 y^{11}} \]

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad