Pregunta
upstudy study bank question image url

\[ \begin{array}{l}\text { Determine whether the pair of lines is parallel, perpendicular, or neither. } \\ y=\frac{9}{17} x-8 \\ y=-\frac{9}{17} x-8\end{array} \]

Ask by Ruiz Chavez. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The lines are neither parallel nor perpendicular.

Solución

To determine whether the given pair of lines is parallel, perpendicular, or neither, we need to analyze their slopes. The equations of the lines are: 1. \( y = \frac{9}{17} x - 8 \) 2. \( y = -\frac{9}{17} x - 8 \) ### Step 1: Identify the slopes From the equations, we can see that the slope \( m_1 \) of the first line is \( \frac{9}{17} \) and the slope \( m_2 \) of the second line is \( -\frac{9}{17} \). ### Step 2: Determine the relationship between the slopes - **Parallel Lines**: Two lines are parallel if their slopes are equal, i.e., \( m_1 = m_2 \). - **Perpendicular Lines**: Two lines are perpendicular if the product of their slopes is \( -1 \), i.e., \( m_1 \cdot m_2 = -1 \). ### Step 3: Calculate the product of the slopes Let's calculate the product of the slopes: \[ m_1 \cdot m_2 = \left(\frac{9}{17}\right) \cdot \left(-\frac{9}{17}\right) \] Now, we will perform the multiplication: \[ m_1 \cdot m_2 = -\frac{81}{289} \] ### Step 4: Analyze the results Since \( -\frac{81}{289} \) is not equal to \( -1 \), the lines are not perpendicular. Additionally, since the slopes \( \frac{9}{17} \) and \( -\frac{9}{17} \) are not equal, the lines are not parallel. ### Conclusion The pair of lines is neither parallel nor perpendicular.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the relationship between the two lines given by their equations, we need to compare their slopes. The first line is \( y = \frac{9}{17} x - 8 \) and has a slope \( m_1 = \frac{9}{17} \). The second line is \( y = -\frac{9}{17} x - 8 \) and has a slope \( m_2 = -\frac{9}{17} \). Next, we check the conditions for being parallel or perpendicular: - Lines are **parallel** if their slopes are equal (\( m_1 = m_2 \)). - Lines are **perpendicular** if the product of their slopes is -1 (\( m_1 \cdot m_2 = -1 \)). Calculating the product of the slopes: \[ m_1 \cdot m_2 = \frac{9}{17} \cdot \left(-\frac{9}{17}\right) = -\frac{81}{289} \] Since \(-\frac{81}{289} \neq -1\), the lines are not perpendicular. We also see that \( m_1 \) and \( m_2 \) are not equal, thus the lines are not parallel either. In conclusion, the lines are neither parallel nor perpendicular.

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad