Pregunta
upstudy study bank question image url

Suppose that \( \$ 2000 \) is loaned at a rate of \( 11 \% \), compounded quarterly. Assuming that no payments are made, find the amount owed after 10 years. Do not round any intermediate computations, and round your answer to the nearest cent.

Ask by Warner Bond. in Mexico
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 10 years, the amount owed is approximately \$5,919.75.

Solución

To find the amount owed after 10 years, we can use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount owed after \( t \) years, - \( P \) is the principal amount (initial loan amount), - \( r \) is the annual interest rate (in decimal form), - \( n \) is the number of times the interest is compounded per year, - \( t \) is the time in years. Given: - \( P = \$2000 \), - \( r = 11\% = 0.11 \), - \( n = 4 \) (compounded quarterly), - \( t = 10 \) years. Substitute the given values into the formula: \[ A = 2000 \left(1 + \frac{0.11}{4}\right)^{4 \cdot 10} \] Now, we can calculate the amount owed after 10 years. Calculate the value by following steps: - step0: Calculate: \(2000\left(1+\frac{0.11}{4}\right)^{4\times 10}\) - step1: Divide the terms: \(2000\left(1+\frac{11}{400}\right)^{4\times 10}\) - step2: Add the numbers: \(2000\left(\frac{411}{400}\right)^{4\times 10}\) - step3: Multiply the numbers: \(2000\left(\frac{411}{400}\right)^{40}\) - step4: Simplify: \(2000\times \frac{411^{40}}{400^{40}}\) - step5: Rewrite the expression: \(400\times 5\times \frac{411^{40}}{400^{40}}\) - step6: Reduce the numbers: \(5\times \frac{411^{40}}{400^{39}}\) - step7: Rewrite the expression: \(5\times \frac{411^{40}}{25^{39}\times 16^{39}}\) - step8: Rewrite the expression: \(5\times \frac{411^{40}}{5^{78}\times 16^{39}}\) - step9: Reduce the numbers: \(1\times \frac{411^{40}}{5^{77}\times 16^{39}}\) - step10: Multiply the fractions: \(\frac{411^{40}}{5^{77}\times 16^{39}}\) The amount owed after 10 years is approximately $5919.75. Therefore, after 10 years, the amount owed on the loan of $2000 at an interest rate of 11% compounded quarterly, with no payments made, is approximately $5919.75.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the amount owed after 10 years with quarterly compounding, we use the formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of times that interest is compounded per year. - \( t \) is the number of years the money is invested or borrowed for. Given: - \( P = 2000 \) - \( r = 0.11 \) (11%) - \( n = 4 \) (quarterly) - \( t = 10 \) Now we can substitute the values into the formula: \[ A = 2000 \left(1 + \frac{0.11}{4}\right)^{4 \times 10} \] Calculating the values step-by-step: 1. Calculate \( \frac{0.11}{4} = 0.0275 \). 2. Then calculate \( 1 + 0.0275 = 1.0275 \). 3. Next, calculate \( 4 \times 10 = 40 \). 4. Now, raise \( 1.0275 \) to the power of \( 40 \): \[ 1.0275^{40} \approx 3.011202 \] 5. Finally, calculate \( A \): \[ A \approx 2000 \times 3.011202 \approx 6022.40 \] Rounding to the nearest cent, the amount owed after 10 years is approximately: \[ \boxed{6022.40} \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad